Version 4.14.1 — 15 March 2024

Published by Just Great Software Co. Ltd.
Copyright © 2004-2024 Jan Goyvaerts. All rights reserved.
“RegexBuddy” and “Just Great Software” are trademarks of Jan Goyvaerts

Table of Contents

RegexBuddy Manual........ciiieeiiiiiiiiiiiiiniieiieiieeeeennnmmmssmseeseeeeeses

1. Introducing RegexBuddy........cocuviiiiiiiiiiiiiii s

2. Getting Started with RegexBuddy........coviviiiiiiiiiiiii s

3. Select Your Application or Programming LANZUAZEccvveuieeurieeirieirieirieirieireeetseeesseeesseeessesessesessesessesessesessenes 11
4. Define a Match, Replace, Of SPLt ACHOMN «....ccvieiiiiiiiiiiiciee s seens 15
5. Set Regular EXPression OPLiONS ...ttt 18
6. Insert a Token into The Regular EXPressiOn ..ottt sseaeseeans 23
7. Insert a Regex Token to Match Specific CharaCters ... 25
8. Insert a Regex Token to Match Unicode CharaCters........cvieiireiireiieeiieicieescieecieescieeseeeseseeseseesesensesenseseens 30
9. Insert a Shorthand Character CLASSc.eceeeurieireeeinieirieireeneieneee ettt ettt seae st sese s ssesessesessesesneaes 36
10. Insert a Regex Token to Match One Character out of Many Possible Characters.........coceveeurieenicericnnenee 38
11. Insert a Regex Token to Match One Character from Predefined POSIX Classes........ccooevreeurieenicericnenee 41
12. Insert a Regex Token to Match at a Certain POSIHONccuvviiieciieiiiiciiiciii s 43
13. Insert a Regex Token to Repeat ANother TOKEN ..o 45
14. Insert a Regex Token to Match Different ALternatives. ..o 47
15. Insert @ Capturing GIOUP.....ccoiiiviiiiiiiicicc bbb 48
16. Insert a Backreference into the Regular EXPression........ciic s 50
17. Insert a Token to Recurse into The Regex or a Captuting Group......ccveereerrieereerriemreeeseenseenseeeseaensenens 51
18. Insert a Conditional into the Regular EXPIesSSIOn ... 54
19. Insert a Grouping Regex TOKEN ..o 55
20. Insert LOOKArOUNd ..o s s 57
21. Insert a Regex Token to Change a Matching Mode ... csessenns 58
22, INSErt 2 COMIMENL. ottt bbb bbb R R bR bbb R e bRt a s sa s 60
23. Using RegexMagic with RegexBuddy.......coucuiiiiiiiciiiiccniccc e 61
24. Insert a Replacement TexXt TOKEM. ...c.oiuiiiiiiicircircrccr et saens 62
25. Insert Specific Characters into The Replacement TeXtcccviiiiiiiniiniiiie s 63
26. Insert a Backreference into the Replacement TEXtcoiuvureiureiureiieeiieiieeeeeeiesieesieeseesseenssesssessesessaens 68
27. Insert a Conditional into the ReplacemMent TEXEc.oucuimreiuriiireeiriieeieeeieeeeeeee e seeeseesssenssessaens 71
28. Insert The Subject String into The Replacement TeXt.. ..o 73
29. Analyze and Edit a Regular EXPIreSSION.. ...ttt ssae s saessssessaens 75
30. Compare a Regex Between Multiple (Versions of) AppLHCations ... 78
31. Export The Analysis of a Regulat EXPIESSION......cvicuiciriciricirieeirierieeeisee e seeens 81
32. Convert a Regex to Work with Another APpHCAtION.......ccvieivieciiiciiiciici e 82
33. Testing Regular EXPression ACHOMS ...ttt ese st ssese s ssesesseassseeessesessssssecans 85
34. Debugging Regular EXPIESSIONScccuviiiiiiiiiiciiiciiicii it ssnaes 92
35. Comparing the Efficiency of Regular EXPressions.......ciiiciciiiiiieieeeeicessie e 95
36. Generate Source Code to Use a Regular EXPIESSION c...vucueecuieiurieciiciicieeeieeeeieee e eseseeseseeans 101
37. Available Functions in Source Code SNIPPELScuiuiimriiiriiiriiiiiiiceeeseese s senaes 103
38. Copying and Pasting Regular EXPLESSIONSc.evcuieiireiuicirieieieieecie e ssese e ssesesessesseaesseaeseesesseans 107
39. Storing Regular Expressions in LIDIAtIes. ... ssssenenes 111
40. Parameterizing a Regular Expression Stored in a LIDrary....c..ccenieinicinienicncnieieeeeeseenseenseaens 113
41. Using a Regular Expression from a LIDIary ... 114
42. GREP: Search and Replace through Files and FOIders.......coveeenicinicnccrcriceeeeeeeseeneaes 116
43. History: Experiment with Multiple Regular EXPIeSSIOnsc..cccvveurieerieirieinieniennienieieeseieeeeesseeessesenseeens 120
44. Share Experiences and Get Help on The User FOrums ... 122

i

45, FOrum RSS FEedSouuiiiiiiiiiiiicic s 126
46. KKEYDOALA SNOLLCULS w..vuvevreirieeiiieiiieieieitieireee sttt sttt sttt staees 127
47. Editing Text with The Keyboard........ccoiiiiiccce e 131
48. Adjust RegexBuddy to YOUur PrefereniCes . .. oottt seaesseaesssans 133
49. Text Layout CONTIZUIALIONcviueiiiciieciieciiecirieieee ettt sees 139
50. Text CutSOr CONTIGUIATION....vurveemieeereeeereieeaeieeeieeaeie s sseseseesessese e esessesessese s sese s esessescssesesseaesseacsseacsseacsseac 144
51. Integrate RegexBuddy with Searching, Editing and Coding TOOISccoceurieuriciriciriciriciriciricirccrecnenes 147
52. Basic Integration with RegexBuddycccceuiiiiiiiiiiiiiiciiciccccce e 149
53. Integrating RegexBuddy Using COM AULOMAION. c....cuvueueeerreecireecieeerreseireaeseesessesesseeessesesseseseesessescssesessesesseans 154
54. ApPlCation TIAENTIIETSvuvuveiiiiiiieii et 165
55. Contact RegexBuddy’s Developer and PUBLShEr. ..ot eeessesessesessesenneaes 187

Regular Expressions Tutorial.........ccceveieeeiiinnnieciiiinnnececnnnneeecnnneeeecnnnnneee. 189

1. Regular EXpressions TUtOIal. ..o sssssssssssenns 191
2. TAEral CRATACTETS couviiviieiiiiicicr s 194
3. Non-Printable CharaCters.. . ssssss s sss s sns 196
4. First Look at How a Regex Engine Works Internally ... 199
5. Character Classes Of CRATACTEL SETS......ou it cse s easseesesenan 201
6. Character Class SUDTIACHON c...vuiuevuiueaieeecieeeieecieecieescie et eese b seae e seae st seaessesesnescssenc 204
7. Character Class INTEISECHION ... sas e 206
8. Shorthand Character CLASSEScveeiueeiueeriueiriieiieeiieeiieesstaetstae sttt sseaessesesseae st seaesseaesseaesseaessesesseacssesssescssenc 208
9. The Dot Matches (AIMOst) ANY CRaraACtercvviuieiuieiiriciicieceieece e eaeseeaes 210
10. Start of String and End of String ANChOLS ... 213
11 WOLd BOUNAALIES.cc..vueevieieecieecireececieecieecisescteec ettt st sacsenns 216
12. Alternation with The Vertical Bar of Pipe SYmMDbOL.......c.cccuviiriiiriiiriieiecrcceeceeeeeeeeeeeeeeeseeseneene 219
13, OptioNal TEEMISucuiiiiiiiiiiiiici s 221
14. Repetition with Star and PIUSccceveuriiiriicc e 222
15. Use Parentheses for Grouping and Capturing.........c..cveeeeeeieiniiriereesieieiiiiieieiessssssssessessesesssssssssssssessenes 225
16. Using Backreferences To Match The Same TeXt AZAIN ..c.vucueeerecureiieeeieeeieeeieeeseeeieeseseese e sensesenseseesesenns 226
17. Backreferences to Failed GLOUPS ..o 229
18. Named Capturing Groups and BacKreferenCes. ... oo seeseseens 231
19. Relative BaCKIELEIENCES ... vuiieiieciceiceccci e 234
20. Branch RESEt GIOUPS....cviiiiiiiiiiiiiii s 235
21. Free-Spacing Regular EXPIESSIONS......cccuieviecirieiieeiiieiiecieietieeeieese et sssaesssaees 237
22. Unicode Regular EXPIESSIONS.cviiiiiiiiiiiiiiiiiiie i ssens 240
23. Specifying Modes Inside The Regular EXPIesSsion......coceeicenicinieinieiieenieieeieeseees e esesseeessesesseaens 249
24, AtOMIC GLOUPING ..rviiiiiiiiiiiii e 251
25, POSSESSIVE QUANTITIEES ..vvevrviueeiereeieieieieitieieieieeteeeseseseeesaeeeseassessaeseaeseasatssasssstasasasasasasasssasasasasasssasssssasssssssssssnsnensnsnsnen 253
26. Lookahead and Lookbehind Zero-Length ASSEItionscccuieiieininiicinieiiciieieieiieeesscessssessens 256
27. Testing The Same Part of a String for More Than One RequiremMentcceweeeeiervcvrereinniericrieseeneieienne. 260
28. Keep The Text Matched So Far out of The Overall Regex MatCh.......ccovceuieuicenicenicenicnienienieeeneaens 262
29. If-Then-Else Conditionals in Regular EXPIESSIONScccvieiieiiiriiiniieiiiiieiicecsesciessesesssesscaessens 264
30. Matching Nested Constructs with Balancing Groups ... 267
31. Regular EXpression RECULSIONc.cviiieiiieiiiiiiiiicicccica s ssnaes 271
32. Regulat EXPIessiOn SUDIOULINIEScccuvviueeeiuieeiieieiecieesciseseiese s ese s ese s ese s ese s ssessese s e sssseessssssssssscsenans 273
33, InfiNIte RECULSION ..cuuivitiiiiiicrcecttct s 277
34, QuUANtfiers ON RECULSION c.vovviriririeieieisisieietstsistst sttt sttt sttt sttt st se st st stss st st st et ss st st st ssssssssssssssssesnses 279
35. Subroutine Calls May 0f May NOt CaPULEC......cccurviureeeieeieeireeieecieeseseesessese s s ese e ssesesessessesessssesessesseans 281
36. Backreferences That Specify a Recursion Level ... 285

1ii

37. Recursion and Subroutine Calls May of May Not Be AtOMIC ..c.ccererrerererrenieerrenieerenreeeeenseseeeerenseseecsenses 288
38. POSIX Bracket EXPIESSIONS w.ucuevurueeiveeniiriaiieeseieeseieeseieeeeisesessese e ssese s seesessesseesessesessesessescssesessssessesessesessescsseans 292
39. Zero-Length Re@ex MAatChes ..o 295
40. Continuing at The End of The Previous MatCh.........ccocieicnieinicinienicneneeneeeseeseeeseiesseesseaesseaesseaens 298
41. Replacement Strings TULOLIALc.ccuieiiiiiiciriciccee e aes 300
42, SPECial CRALACELS ..ottt bbb bbb 301
43, Non-Printable ChAaraCters ... s sss s ssas s s 303
A4, MALCNEA TEXL w.euvrviirieiiiciiieee et 304
45. Numbered and Named BacKtreferenCesttt sseaesseaesssaes 305
40, MALCH CONTEXL 1.vrviiriiiiiiiiicee ettt saes 307
47. Replacement Text Case COMVEISION.....ciuiiiiiiieiiriisieteisisie st es s 308
48. Replacement String CoNAIIONALS.........ccuiueuieciiiciiciiciee e sees 310
Regular Expressions EXamplesoooiiiiiiiiiiiiiiiiiiniiiiiieeecciniieeeeeeeeeene, 313
1. Sample Regulatr EXPIESSIONSccuiuimieiiiecieeciriecirieiiei e 315
2. Matching Numeric Ranges with a Regular EXPIessionceeienicnicnieicriceeceeeseeesseeesseeenseeens 317
3. Matching Floating Point Numbers with a Regular EXPIession ... 319
4. How to Find or Validate an Email Address......oviis s 320
5. How to Find or Validate an IP AdALessccoveeiienieinieinienieecnecineeineeneeesseaesseeesseeessesessesessesessesessesessenes 325
0. Matching @ Valid IIAe ..o s 327
7. Replacing Numerical Dates with Textual Dates......ccoiiiiiiiiiiii e 329
8. Finding or Verifying Credit Card NUMDELSc.ccuieiieiiieiicricrccecree e eeeeneaes 331
9. Matching Whole LINes Of TeXtu. ..o sssessnnes 333
10. Deleting Duplicate Lines From a File ... ssssssssssssssons 335
11. Example Regexes to Match Common Programming Language CONStIUCESc.oveveerreeurecrreemeeneremerenenenn. 336
12. Find Two Words Neat FaCh Oher ...ttt eeseisesessesesseseseesesessesessesesscseens 339
13. Runaway Regular Expressions: Catastrophic BacKtracking........cceeueeiueecueecieeniieeneircieeeeececeeceeeeseeenenne 340
14. Runaway Regular Expressions: Too Many Repetitionscccuviviiiiiniiiniiniiiicsesesssesscsons 347
15. Preventing Regular Expression Denial of Service (REDOS)......coviuiiuriiiriieeiiecieeieeeeeeeceeceeeeeeeneene 350
16. Repeating a Capturing Group vs. Capturing a Repeated Group ... 354
17. Mixing Unicode and 8-bit Character COdes.......ccvmmriiirieiriiieeeieicieecieeeieese e sensesenns 356
Regular Expressions Tools & Programming Languagescccceevuueeeieinnnee. 359
1. Specialized Tools and Ultilities for Working with Regular EXPressions ... 361
2. C++ Regular Expressions With BOOSE ...c..ccuiciiciriciniciccrceeeeieeies et seaens 364
3. Delphi Regular EXpressions ClaSSES.........viimiiiiiiiiiiiiiiiciiciiseicsesese s ssssssssssssssessssessnnns 366
4. EditPad Lite: Basic Text Editor with Full Regular Expression SUppOLt......cccerieericenieineenneeneenreenneees 370
5. EditPad Pro: Convenient Text Editor with Full Regular Expression SUPPOLt......c.ccveiviciriciriciricniicnenns 372
0. WHAL IS GIEPP..eieeiieiiiciicirec e et ettt 375
7. GNU Regular EXpression EXEENSIONS ...ttt sessss s ssssassesees 377
8. Using Regular EXpressions il GIOOVY ...ttt ssse s ssssessssessenns 379
9. Using Regular EXPressions I JAVA ... esees 381
10. Using Regular Expressions with JaAVASCIIPE ... 384
11. MySQL Regular Expressions with The REGEXP Operator.......cceueeiueeeureereeneieeeieeeieeeseeeseeeseeesenesenns 387
12. Using Regular Expressions with Microsoft INETccccccviiiiiiiiiicceecesescieensens 389

13. Oracle Database Regular EXPLESSIONScccveeueeirieiricirieieieieeeieceie e ssesessssenns 393

v

14. The PCRE Open Source Regex LIDIAryccviiiiiiiiiiiiiiriiiircici s seeseseessseens 396
15. The PCRE2 Open Soutrce REGEX LIDLALY.....cccuviiiieiricirieiricieieieeeieeeie e eseseeseseese e sessesesscsenns 398
16. Petl’s Rich Support for Regular EXPressions........cciriiiriiiriiiiiiieiceeeeeeseescse e essseeseseesssenns 402
17. PHP Provides Three Sets of Regulatr Expression FUNCHOMNScuvcveecuercueecirecieecieeeieeeieecieeeieeeseesesenesenne 404
18. POSIX Basic Regulat EXPIESSIONSc.cvcuieiuieiiieiiiciiciriciiie i ess e seesssessssessssenns 408
19. PostgreSQL Has Three Regular Expression FIAVOLS ... 410
20. PowerGREP: Taking grep Beyond The Command LiNeccoceueinieinicinicinicinicicnieeeeeseeseeneeens 412
21. Regular Expressions with POWEISREll.......c.occcuiiiiiiiiiniciicicicicecceeeeesssese e ssaessaens 415
22. PYthOn’s £ MOQULEcuvuieeieeirecisccieteeieeee et et sttt eseseescsneae 417
23. Regular Expressions with The R Language........ccccvciicinieiniciniciicieicricieeeeeeeseeeeeseessesseaessseens 421
24. RegexMagic: Regular EXpression GENEIATOLciuiiiiiiriiiciiiiicieieisesie s seses 424
25. Using Regular Expressions With RUDY ... sciescaens 426
26. C++ Regular Expressions With StdifeeX.....oiiiiiiiii s sens 428
27. Tcl Has Three Regular EXpression FIAVOLS ..o sssessaessaens 431
28. VBScript’s Regular EXPression SUPPOLt.......ciiiiiiiiiiii s sssssssssens 435
29. How to Use Regular Expressions in Visual BasiC.......ccoccvninicccnes 438
30. wxWidgets Supports Three Regular Expression Flavors........ccvcccirecirecinicirereereeseeseeieceneeeneenns 439
31. XML Schema Regular BEXPIessions ... ssssssssss s ssssesssnes 443
32. XQuery and XPath Regular EXPIESSIONScccvviuieiuriiiriiiicirecrccieeeieeseieeae s ssese s essss s seesesenans 445
33. XRegExp Regular Expression Library for JavaScript ... 447

Regular Expressions Reference......ccccvvvnnnnnnrieeeeiiiiiiiissnnnnnnneeeeecininsnnnnnnnnnnee . 449

1. Regular Expressions REference ... ssssssssons 451
2. Special and Non-Printable Characters ...t ssssse s 454
3. BaSIC FEATULES ..vveviiuietieticticteeecteetece ettt ettt et ettt eteeteete e st eteeteessesseseesseseessessessessessessessessessessessessessessessessessersessesserean 459
4, CRATACLET CIASSES c.viiviiviirierietietieticteete ettt et eteeteereeteeteeteereeteereereereereereeseereesseseereereereessereeseereereessereerseseersessensensensensensenes 461
5. Shorthand CRaracter CLASSES ...c.iiiriiirerierieeriereiereeereee et ereeteseesestesesetesseseesessesessesessesensesessessesessesessesensesensessesersesen 466
0. AICRIOTS .ttt ettt ettt ettt et ettt eaeeateatettetteaterteaeereeateateateaterteateateatentertertertereeaterterterseneereereereensenen 469
7. WOLd BOUNAALIES ...veveviereeieteectieeeteeree ettt ettt ettt ettt et ettt es st et easebensebe s eseesessesessesensetensessesessesensesensesesessesenseren 472
8. QUANTITIETS ..ottt ettt st 474
9. Unicode SyNtax RELEIEICE . .uuvuiuiieiiieiiecice et 479
10. Capturing Groups and BackreferenCescvwuiiiiiriiiricrceeie s 482
11. Named Groups and BackrefereniCes. ..ot 486
12, SPECIAL GLOUPS ..ottt 490
13. Balancing Groups, Recursion, and SUDTOULNEScccuviiiiieiiiiiiiiiicnsssssssessssss s 494
14. Replacement String CRATACTELSc.v.cueeiueeiiieirci et 499
15. Matched Text and Backreferences in Replacement StrNgs.......c.veeveveiniiniinieeicieiiiece e 503
16. Context and Case Conversion in Replacement STNGScccvveurecrrecirecieeeieeceeeeeseeeeese e senseseesesenns 508

17. Conditionals in Replacement StrNGS.oiuiiiieiiriiiiiiicie s 511

Part 1

RegexBuddy Manual

1. Introducing RegexBuddy

RegexBuddy is your perfect companion for working with regular expressions. Let me give you a short
overview of some of the most important things you can achieve with RegexBuddy.

You can learn all there is to know about regular expressions today with RegexBuddy’s detailed, step by step
regular expressions tutorial. You can find this tutorial in the second part of this manual.

Learn each of the different elements that compose a regular expression, step by step in logical order. If you
already have some experience with regular expressions, this logical separation enables you to brush up your
knowledge on specific areas. When trying to understand a regex, you only need to click the Explain Token
button, and RegexBuddy will present you the appropriate topic in the tutorial.

Regex Tree and Regex Building Blocks

RegexBuddy’s regex building blocks make it much easier to define regular expressions. Instead of typing in
regex tokens directly, you can just pick what you want from a descriptive menu. Use RegexBuddy’s neatly
organized tree of regex tokens to keep track of the pattern you have built so far.

When you need to edit a regular expression written by somebody else, or if you are just curious to understand
or study a regex you encountered, copy and paste it into RegexBuddy. RegexBuddy’s regex tree will give you a
clear analysis of the regular expression. Click on the regular expression, or on the regex tree, to highlight
corresponding parts. Collapse part of the tree to get a good overview of complex regular expressions.

You can create and edit regular expressions quickly and easily with RegexBuddy. You can mix manipulating
RegexBuddy’s building blocks and directly editing the regex pattern to suit your own skill and style. Rely on
RegexBuddy as you rely on a buddy or coach to assist you.

Compare and Convert Regular Expressions Between Applications and
Languages

There are many different implementations of regular expressions. A regular expression that works in one
application or programming language may not work or work differently in another application or language, or
even in another version of the same application or language.

If your regex needs to work in multiple applications or multiple versions of an application, tell RegexBuddy to
compare your regex between those applications. You’ll be alerted to any potential differences while you’re
creating your regular expression, so you don’t waste any time testing a regular expression that won’t work
consistently, or run into unpleasant surprises later if your tests didn’t expose the differences.

If you have a regex that works correctly with one application but now you need it to work with another
application, tell RegexBuddy to convert your regex from one application to another. RegexBuddy will adjust
the regex to the syntax expected by the target application and alert you if it may find different matches in the
target application than the original regex would in the original application. This will allow you to quickly
decide, with minimal testing, whether the converted regex will still work the way you want. It’s also a great

4

way of using regular expressions that you have found on the Internet but that were intended for applications
you’re not familiar with.

Regex Tester and Debugger

You should not risk actual data with untested regexes. Copy and paste sample data into RegexBuddy, or open
test files. You can step through the search matches in the sample data, and get a detailed report about each
match. Or highlight all matches to debug the regex in real time as you edit it.

When you plan to use a regex in a search-and-replace operation, preview the search and replace in
RegexBuddy. If you want to split a string using a regex, check the result in RegexBuddy. Avoid nasty surprises
when using a regular expression to modify real data or files.

If a regex isn’t working exactly the way you’d expect it to, invoke RegexBuddy’s debugger to see exactly how
the regular expression is applied. You will see which text is matched by each token, at every step during the
matching process. You will know exactly why the regex works the way it does, and fix it without any
guesswork.

Develop Efficient Software Quickly with Instant Code Snippets

You can save time and code efficiently by using regular expressions when developing applications and scripts.
With the proper regex, you can often do in a single line of code, or a few lines of code, what would otherwise
require dozens or hundreds.

Rely on RegexBuddy to handle the details, such as which classes and function calls to use, and how to escape
special characters. Just select the language you are working with, and the action you want to perform. Test
whether a string matches a regex, extract matches from a string, search and replace, split a string, etc.

RegexBuddy knows all the common regex actions and how to perform them with a variety of programming
languages: C#, VB.NET, Java, Petl, PHP, JavaScript and C/C++.

Your Own RegexBuddy Library

Build your own collection of handy regex patterns, and use them whenever you want to. You can easily
browse through and instantly search through the regexes you collected. When you found the regex you want,
click the Use button.

For common tasks, use one of the many regular expressions you can find in RegexBuddy’s library of pre-
created regular expressions. You will find readily useful regexes for a wide variety of tasks. For many tasks,
there will be several choices of regex patterns, with the differences clearly described.

Share Experiences with Other Users

Share your experiences with other RegexBuddy users or get help on RegexBuddy’s built-in user forums.
Simply click the Login button for instant access. You can discuss any topic involving RegexBuddy or regular
expressions in general.

2. Getting Started with RegexBuddy

This section provides a brief overview of what you can do with RegexBuddy. It won’t really try to explain
anything. RegexBuddy is quite straightforward to use, so you can jump right in. For more details, read the rest
of Part 1 in the manual.

By default, RegexBuddy shows the regular expression and regex history at the top. The bottom area shows
eight tabs: Create, Convert, Test, Debug, Use, Library, GREP and Forum. If you have a large monitor, you
can arrange the tabs side by side in two groups as shown below. To do so, click on the View button in the
toolbar. It’s the third button from the right in the topmost toolbar. Select Side by Side Layout in the View
menu. If you have two monitors, the Dual Monitor Side by Side layout gives you a maximum view. You can
also rearrange the tabs manually by dragging and dropping them with the mouse. Panels can be tabbed,
docked or floating. Toolbars can also be rearranged and made to float.

The screen shot below shows RegexBuddy in side by side layout in its full glory. Other screen shots in this
manual will be smaller with most of the panels and toolbars hidden, to keep the file size and download time
reasonable. Read on below the screen shot to learn how to create your first regular expression with
RegexBuddy.

C# (.NET 2.0-7.0) - Helpful + |[CL Match | &), Replace 7 Spit Copy~ [Paste~ | - @ - H- 5@

Default flavor - Case sensitive - Exact spacing - Dot doesn’t match line breaks - % don't match at line breaks ~ Numbered capture * Reset

\A(e2[1-9]|1[@-2])/(e2[1-9][12][@-9]]=[e1])/[@-9]1{2}\z(?#Shiny - embossed Logo) (P History =y « |
+X|x00x
Regex 1

B create 22 Convert 4 Debug use [} Library O Test @8 crep R Forum

Detaled - | [Explain Token [Insert Token - | Compare (no comparison) = [~ &l - [} - @ ~ | #ll Debug - [, Highight[-] €. 8L | & Lt al-

EL Export [] & | F RegexMagic~ Line by line -

----- .-[&) Assert position at the beginning of the string A || valid:©',

v {E0) match the regex below and capture its match into backreference numbe 1*"1*"91:-'-: .
v m Match this alternative (attempting the next alternative only if this one X

12/31/99."
v [A&] Match the character "0” literally Tnvalid:"
. Between zero and one times, as many times as possible, givin a/e/a""
----- @ Match a single character in the range between "1" and "9" a/a/e8"."

v m Or match this alternative (the entire group fails if this one fails to ma 1/1/1% -
-[&) Match the character "1” literally 12/32/525

19/19/19"
----- {3 match a single character in the range between "0" and "2" 1/9/1999" ",
{E Match the character /" literally 1212/12/12°"

v (@) Match the regex below and capture its match into backreference numbe on 6/2/@7 I wrote this."
v m Match this alternative (attempting the next alternative only if this one || On 8/24/13 T edited this
(&) Match the character "0” literally

-[@) Between zero and one times, as many times as possible, givin
! (59 Match a single character in the range between ™1” and "9”

v m Or match this alternative (attempting the next alternative only if this
: Match a single character from the list "12"

----- &3 Match a single character in the range between ™0" and "9"

A

i o Matudl a S Laraulst T e Tarigs Delivestl U a2 Pl seeecsccccncacnccicnnans Start-Length - s rereren i,
v {1 or match this alternative (the entire group fails if this one fails to ma Match 1 of 3: 1/1/81 8 [
[&]) Match the character "3” literally EHGroup 1: 8 1%
Match a single character from the list "01" HGroup 2: la T
@ Match the character /" literally
v [&F) Match a single character in the range between "0” and "9" v

< >

If at First You Don’t Succeed: Cheat

Everything is easier if you cheat, so we’ll start with that. While RegexBuddy is designed to help you create and
test regular expressions, and learn everything about them, it also comes with a handy library of regular
expressions that you’ll find useful in many situations. To access it, simply click on the Library panel. Click on
a regex that interests you, push the Use button, and pick Use Regex and Test Subject.

RegexBuddy explains how this regular expression works on the Create panel. Fach node in the tree
corresponds with one elementary piece of the regular expression, called a token. If you click on a node, the
corresponding token will be selected in the regular expression. Click the Explain Token button to open
RegexBuddy’s regular expressions tutorial at the page that explains the node you selected in the tree.

Reading through the whole tutorial from the first page to the last page can be quite overwhelming. Learning
as you go by selecting regular expressions from the library and reading relevant parts through Explain Token
is more pleasant.

Building Your First Regular Expression

The Create panel and the Test panel in RegexBuddy are two powerful tools to help you create regular
expressions that match exactly what you want. If you have the screen space, it’s a good idea to keep both
visible in the side by side view.

The Create panel explains your regular expression in plain English. Yet, it does maintain a one-on-one
relationship with the actual regular expression syntax. This way it helps you learn the actual syntax, rather
than being a crutch you’ll forever depend upon. As you become more comfortable with regular expressions,
you’ll start typing in more and more of your regular expressions directly rather than going via the Create panel
and its Insert Token menu. But even as an expert, you’ll still use the Create panel to help you analyze long
regular expressions. Its tree structure is often easier to grasp than a long-winded linear regular expression.

The Test panel shows you what your regular expression actually does. It’s a sandbox where you can test your
regular expression, before mauling actual data.

Enough talk! Let’s create our first regular expression to match a date in American mm/dd/yy format, with
years from 00 to 99, and optional leading zeros for the day and month. Now read that sentence again. You
may not realize it yet, but you’ll soon learn through bitter experience that that rather long sentence is the most
important step in crafting a regular expression that does exactly what you want. That is: knowing exactly what
you want. If you don’t know whether leading zeros should be optional or not, or if the year should have 2 or
4 digits, there’s no hope for you. Don’t launch RegexBuddy until you know what the job is.

Once you know the job, codify it by preparing test data. You can open a file, download a web page, or just
type your samples directly into the Test panel. For this example, we’ll enter multiple test subjects line by line.
So start with choosing the “Line by line” option in the drop-down list on the Test toolbar. Then copy and
paste the following lines:

Valid:
1/1/01
01/01/78
12/31/99
Invalid:

0/0/0

0/0/00

1/1/1

12/32/52

19/19/19

1/9/1999

1212/12/12

On 6/2/07 I wrote this
On 6/24/13 1 edited this

Particularly the invalid examples are important. It’s often much harder to “see” which undesired matches a
regular expression will produce than it is to see that a regular expression will match everything you want.

Now, let’s start crafting our regular expression. Begin with clicking the Clear History button in the History. It
looks like a File| New icon. This makes sure we start with a clean slate. To get the same results as explained
below, select “C# (NET 2.0-4.5)” in the list of applications. If you select another application, you may get
slightly different results.

The easiest way to create a regular expression, is to have your sample matches ready on the Test panel, and
simply proceed from left to right. Regular expressions work with text, character by character. So we’ll have to
translate what we want, our date format, into a pattern of characters.

First up is the month, which consist of a digit 0 or 1, followed by a digit 0 through 9. The first digit is
optional if the number is less than 10. Let’s try this. Click the Insert Token button on the Create panel, and
select Character Class. In the box “literal characters”, type “01” (zero one, without the quotes), and click OK.
We just created our very first regular expression: [01]. The Test panel immediately highlights all digits 0 and
1. Now, this first token has to be optional. So we click Insert Token again, and select Quantifier (repetition).
Set the minimum to zero and the maximum to one. This essentially makes the character class token optional.
Choose the “greedy” option, and click OK. RegexBuddy puts a question mark after the character class:
[01]2. A question mark in a regular expression indeed makes the preceding token optional. To finish our
month number, we insert another character class. Select Insert Token, Character Class and click the Clear
button. Under “range of characters”, type 0 in the left box, and 9 in the right. Click OK. The regex so far is
[01]12[0-9]. The test panel highlights a whole bunch of numbers. (Can you spot our first mistake? More
about that later.)

The date separator is easy: a literal slash. Click Insert Token, Literal Text, type a forward slash, and click OK.
RegexBuddy appends a forward slash to your regex. Very clever. The highlighting on the Test panel changes
dramatically. We’ve already progressed to the point where years are no longer matched as lonely digits.

Next up is the day. It consists of two numbers. An optional digit between 0 and 3, and a required digit
between 0 and 9. We already know how to match a range of digits and how to make one optional. So just
type [0-3]1?[0-9] at the end of your regex. Adding the date separator while we’re at it, we get: [01]2[0-
91/1[0-31?[0-9]/. Things are starting to shape up.

The year consists of two digits ranging from 0 to 9 each. You could just type in [0-9] [0-9]. Or, you could
type in [0-9] and get some practice inserting a quantifier that repeats the token twice. The result is then:
[01]1?[0-9]1/[0-3]17[0-9]1/[0-9]1{2}.

All done! Our regex matches what we want. Copy it into the source code, compile, ship to customer, and wait
for the bug reports to roll in.

9

The regular expression indeed matches the dates we want. But it also matches a bunch of stuff we don’t want!
How important is this? This is yet another thing that must be specified in the requirements. If you’re parsing
a computer-generated database export that you know will only contain valid dates, you could just use [0-
91{2}/[0-91{2}/1[0-91{2} to grab all dates. No need to make your regex complicated to filter out
99/99/99, because the database can’t store that no-date anyway. But if you’re going to process user-provided
data, you’d better case your regex in molded stainless steel with a shiny embossed logo.

The first problem is that our month and day parts allow too many numbers, like 0 and 19 for the month, and
0 and 32 for the day. Let’s begin with the month. While the first digit is indeed an optional 0 or 1, and the
second digit is always between 0 and 9, there’s another restriction we didn’t put into the regex: if the first digit
is 1, then the second digit must be between 0 and 2. And if the first digit is O or missing, then the second digit
can’t be zero. So we essentially have two alternatives for the second digit, depending on what the first digit is.
Let’s do this.

First, delete the tokens for matching the month from the regex, leaving /[0-312[0-9]1/[0-9] {2}. Put the
cursor at the start of the regex. For the first alternative, we have an optional zero and a digit between 1 and 9.
We already know how to do this, so just type: 02 [1-9]. Now we need to tell RegexBuddy we want to add an
alternative to what we just typed. This we do by selecting the Alternation item in the Insert Token menu.

RegexBuddy will insert a vertical bar, also known as the pipe symbol. Now we type in the second alternative:
1[0-2] matches 10, 11 and 12. Our regex is now 02 [1-9] [1[0-2]/[0-312[0-9]/[0-9]1{2}.

Unfortunately, that didn’t quite go as planned. The Test panel now highlights individual digits all over the
place. The Create panel tells us why: the vertical bar alternates the what’s to the left of it with everything
that’s to the right of it. You can see that by clicking on “match this alternative” in the regex tree, and then on
“or match this alternative” below. The first alternative is correct, but the second one should stop at the /.

To do this, we need to group the two alternatives for the month together. In the regular expression, select
02[1-9]1]1[0-2]. Do this like you would select text in any text editor. Then click Insert Token, and select
Numbered Capturing Group. We could have used a non-capturing group since we’re not interested in
capturing anything. However, non-capturing groups use a more complicated syntax than numbered capturing
groups. You can try them if you want though. It won’t make any difference in this example.

Now let’s look at the Create panel again: the capturing group’s node now sits on the same level in the tree as
the two tokens that match the / literally. The two nodes for the alternatives for the date sit nice and cozy
below the group node. If you click on them again, youll see each alternative selects exactly the two
alternatives we typed in three paragraphs ago.

We can use the exact same technique for the day of the month. If the first digit is zero or missing, we match
0?[1-9]. If the first digit is a 1 or 2, we match [12] [0-9]. If the first digit is a 3, we match 3[01]. Put
together in a group with alternation, we match the month with: (02 [1-9] | [12] [0-9] |3[01]).

Our overall regex is now (02[1-9]1[1[0-2])/(02[1-9]1|[12]1[0-9]|3[01]1)/[0-9]1{2}. Looking at it
like this, you can see why even regex gurus find RegexBuddy’s Create panel helpful. Even though you already
know all the syntax used, the regex tree helps to analyze what’s going on.

We’re almost there. Everything highlighted on the Test panel is now a valid mm/dd/yy date. However, the
regex is being sneaky and matching text that looks like a date from the middle of longer strings. There are two
ways to go about this. When validating user input, you’ll want to check that the input is nothing but a date.
For that, we can use start-of-string and end-of-string anchors. Place the cursor at the start of the regex and
click Insert Token, Anchors, Beginning of The String. Move the cursor to the end of the regex, and click

10

Insert Token, Anchors, End of The String. Our final regex is NA(O2 [1-9]1 |1[0-21)/(02[1-9]1|[12][0-
9113[601]1)/[0-9]1{2}\z.

If you wanted to extract the date from “On 6/2/07 1 wrote this” (I did!), you can’t use the \A and \z
anchors. In that case, use Insert Token, Anchors, Word Boundary instead of Beginning or End of The String.
A word boundary checks if the match isn’t in the middle of a word or number.

So how about that shiny embossed logo? Easy! Click Insert Token, Comment and type “shiny embossed
logo”. Donel

How to Figure This out on Your Own

Of course you’re asking me how you’re supposed to know what to pick from the Insert Token menu. Well,
RegexBuddy is designed to teach you about regular expressions while making it much easier to work with
them regardless of your experience. So it doesn’t try to hide how regular expressions work. To the contrary:
just like the regex tree on the Create panel has a one-on-one relationship with the actual regular expression
syntax, so does the Insert Token menu.

At first, you’ll find this confusing. But you’ll soon get the hang of it. The next step after working through this
“getting started” tutorial is to read the regular expressions quick start and the help topics for the Insert Token
menu. It’s only a few pages. They’ll give you a great overview of exactly what you can do with regular
expressions. Then it’ll be much easier to experiment with the Insert Token menu.

Remember:

1. Figure out exactly what you want to match, and what you don’t want to match. Write it down.
On the Test panel, put in examples of everything you want to match, and everything you don’t want
to match.

3. Create more stupid variations of everything you don’t want to match on the Test panel.

Craft your regular expression, from left to right, bit by bit.

5. Fix up your regex until the Test panel says you’re good to go.

>

11

3. Select Your Application or Programming Language

About the only thing that all regular expression engines have in common is that its designers always try to
come up with “new and improved” regex features. The result is that there is a lot of inconsistency in the
regex syntax supported by various applicationsand programming languages. Even different versions of the
same application or language can interpret a regex differently. Fortunately, RegexBuddy takes care of all that
for you.

When creating a new regular expression, you should select the regex flavorappropriate for the tool or
language in which you plan to use the regular expression before creating the regular expression. You can do
so via the drop-down list in the top left corner of RegexBuddy’s window, or by pressing Alt+IF on the
keyboard (F for “flavor”). Your favorite applications are shown directly in the list. By default, these are the
latest versions of the most popular applications that RegexBuddy supports.

Selecting a different application in the list changes the way RegexBuddy interprets the active regular
expression. It does not modify the regular expression. When pasting a pre-created regular expression into
RegexBuddy, select the application the regular expression is intended for, even if it is different from the one
you intend to use the regular expression with. If you want to convert a regular expression to a different
application, use the Convert panel.

12

Java 8 7 HE|D|:I..I| g | (1}, ﬂatch % Eep[ace Iz Eph‘t Copy~ Uj Paste - 6 - 6 - [EEE - %
;E:Thﬂeizcedrapplimtions and languages... Aft+F1 sn't match line breaks - % match at line breaks -
boostirregex 1.78-1.83
boostzwregex 1.78-1.83 —
C# (.MET 2.0-7.0}) ssions)
C++Builder 10.3-11 (TRegEx)
Delphi 10.3-11 (TRegEx)
EgJTJPHEgEE 7 Use @ Library E GREP m Forum
E[P;E; E’Ja[i}:::(e%r?_gﬁ?ume ~ | Compare (no comparison) ~ | [kl Export ==
_r literally (case sensitive)
Java 19-21 Il iti
JavaScript (Chrome) il (case st.ar.15| ve)
MySQL (case sensitive)
Oracle 11gR1, 11gR2 & 12c
PCRE 8.40-8.45 UTF-8 » next alternative only if this one fails)
Egﬁ%%lﬂ%gg_zm'gg arally (case sensitive)
PHP preg 8.0.0-8.1.24 ‘ase sensitive)
PostgreSQL s many times as possible, giving back as needed (greedy)
PowerGREP 5 e if thi ;
jroup fails if this one fails to match)

P Shell t
Pl_?rtwhirn f? Operators iterally (case sensitive)
Python 3.11-3.12 ssions" literally (case sensitive)
E4b2£:443221 v (case sensitive)

uby 2.4-3. o
Smg (10K 19-21) case sensitive)
std::regex (Visual C++ 2017-2022) ratch into backreference number 1
std:wregex (Visual C++ 2017-2022) » next alternative only if this one fails)
Egls:?r.iﬁt ‘ase sensitive)
Vlsual%asic (.NET 2.0-7.0) jroup fails if this one fails to match)
Visual Basic 6 wally (case sensitive)
led%ets ‘ase sensitive)
ﬁgﬂl‘tﬁc ema as many times as possible, giving back as needed (greedy)
XRegExp 5 (Chrome)

More Applications and Languages

Select “More applications and languages” at the top of the list or press Alt+F1 on the keyboard to show a
dialog box with the complete list of predefined applications and languages. The ones you tick in the dialog
box ate the favorites shown directly in the drop-down list. The built-in applications cannot be edited or
deleted. But you can edit their associated source code templates.

An “application” in RegexBuddy is a group of five settings:

1. Regular expression flavor: The syntax supported by and the behavior of the regular expression engine
used by this application.

2. Replacement text flavor: The replacement text syntax, if any, supported by this application.

3. Split flavor: The behavior of this application when splitting a string along regex matches, if
supported.

13

4. String style: Rules for formatting a regex or replacement text as a literal string when copying and
pasting.

5. Template for source code snippets: Template for generating code snippets on the Use panel. Click
the Edit button to edit a template or to create a new one.

When adding custom applications, you are limited to selecting predefined regex, replacement, and split
flavors. Because the flavor definitions are very complex, you cannot create your own. You can select them in
combinations that were not previously used in any application. If you’re working with an application or
programming language that uses a regex, replacement, or split flavor that is different from any of the flavors
supported by RegexBuddy, you can let us know as a feature request for future versions of RegexBuddy.

Applications and programming languaaes (tick favorites):

b PowerShell operators ~

[Python 2.4-2.6

b4 Python 2.7 .

[] Python 3.0 =

[Python 3.1 Ruby 2.4-3.2

E Python 3.2
Python 3.3 -

= Python 3.4 Application cannot search-and-replace

[] Python 3.5 Select from replacement text flavors that correspond with the regex flavor

[] Python 3.6

[Python 3.7-3.10

i Python 3.11-3.12

(cannot edit built-in application)

Select from all replacement text flavors

[]R2.14.0-2.14.1 Ruby 1.8-3.2
[1R2142
[1R215.0-3.0.2 Application cannot split strings
E E ggiﬁii Select from split flavors that correspond with the regex flavor
[1R3.50-363 Select from all split lavars
IR 40,0413
R4.20-421 Ruby 1.8-3.2
[] Ruby 1.8
L Ruby 1.9 P
[| Ruby 2.0-2.1 E—eL L e e L
[] Ruby 2.2-2.3 Ruby // operator
v RS v
%, Uncheck Al g New ¥ Delete Ruby 2.4 Edit

0K x Cancel 2 Help

You can select a custom source code template for custom applications. First, click the Edit button to open
the template editor and save the new template. Close the template editor and then select the newly saved
template for the custom application.

Helpful or Strict Emulation Mode

Accurate emulation of an application’s regex flavor can sometimes get in the way of helping you create
regular expressions, particularly if you’re working with a regex flavor that is different than the one you
normally use. To alleviate this, you can toggle RegexBuddy between Helpful and Strict mode via the drop-
down list that sits right next to the applications drop-down list. In Helpful mode, RegexBuddy tries to be
helpful and point out potential mistakes in your regex. In Strict mode, RegexBuddy emulates the selected
application exactly, even in situations where the application’s behavior isn’t very sensible.

In Helpful mode, RegexBuddy helps you deal with unsupported syntax. For example, you may be used to
using \A to match the start of the string. But in JavaScript, N\A matches a literal A. In Helpful mode,

14

RegexBuddy assumes that if you wanted to match A literally, you’d just enter A as your regex. So if you enter
\A, RegexBuddy takes the liberty of telling you that JavaScript does not support \A as a start-of-string anchor.
If you double-click the error on the Create panel, RegexBuddy will replace NA with A which JavaScript does
support. In Strict mode, however, RegexBuddy will tell you that NA matches a literal A in JavaScript, and
behave that way on the Test panel.

In Helpful mode, RegexBuddy also helps you deal with deficiencies in the emulated application’s regex
engine. For example, Java has various issues when dealing with character class intersection. Java’s
documentation specifies [a-z&&[def]] as the proper syntax. In reality, [a-z&&def] works just as well.
Things get complicated when you mess up the syntax. Java does not treat [a-z&&[def] ghil as an error. It
interprets it as [a-z&&ghi], completely ignoring the [def] part. With Java selected in Strict mode,
RegexBuddy does the same. In Helpful mode, RegexBuddy treats [a-z&&[def]1Eill] as an error, pointing
out that ﬁ overwrites the [def] part. But if you select Ruby as your application, there is no difference in
Helpful or Strict mode. In both modes, RegexBuddy will treat [a-z&&[deflghil as [a-z&&defghil]
which is what Ruby does and what makes sense.

15

4. Define a Match, Replace, or Split Action

With most tools and languages, you can perform three actions using a regular expression: match, replace or
split. You can define, test, debug and implement all three with RegexBuddy.

Match

A match action applies the regular expression pattern to a subject string, trying to find a match. If successful,
the match can be applied again to the remainder of the subject string, to find subsequent matches. When you
perform a search using a regular expression in a text editor, you are technically executing a match action. The
file you are editing is the subject string.

When programming, you can use match actions to validate user input and external data. The regex \A-
?2\d\Z, for example, checks whether an integer number was entered. Match actions make it easy to parse and
process data. Use capturing groups to extract just the data you want.

To define a match action in RegexBuddy, click on the Match button near the top of the RegexBuddy window.

Enter the regular expression into the text box. You can right-click the text box to insert regex tokens without
having to remember their exact syntax.

Perl 5.30-5.32 - Helpful -

% Replace % Spitt Copy~ [(paster (O - O -

Case sensitive = Exact spacing - Dot doesn't match line breaks - 4% don't match 3t line breaks -

Mumbered capture * Reset

’m-?m\z

B Create % Convert L Test ’. Debug Use @ Library § GREP m Forum
Detaled ~ | [Explain Token [EJ Insert Token~ [k, Export [] &=
----- Assert position at the beginning of the string

v {B Match the character *-" literally

----- Between zero and one times, as many times as possible, giving back as needed (greedy)
..[W Match a single character that is a “digit” (any decimal number in any Unicode script)

Compare (no comparison) -

----- Assert position at the end of the string, or before the line break at the end of the string, if any (line feed)

16
Replace

A replace action applies the regular expression pattern to a subject string, and replaces the match or each of
the matches with a replacement string. Depending on the tool or language used, this will either modify the
original subject string, or create a new string with the replacements applied. By using backreferences in the
replacement text, you can easily perform some pretty complex substitutions. To invert a list of assignments,
for example, turning one = another into another = one, use the regex (\w#)\s*=\s*(\w+) and
replace with $2 = $1.

To define a replace action in RegexBuddy, click on the Replace button at the top. Enter the regular
expression in the topmost text box, and the replacement text into the text box just below. To easily insert a
backreference into the replacement text, right-click in the text box with the replacement text at the spot
where you want to insert the backreference. This will move the text cursor to that position and show the
context menu. Move the mouse to the Insert Token item to expand it. Finally, select Use Backreference.

Some applications do not have the ability to search-and-replace. The Replace button is grayed out when you
select such an application.

Perl5.30-5.32 ~ Hepful ~ | €, Match [, Replace] 7 spit Copy~ [[}paster | - @ -

Case sensitive = Exact spacing -~ Dot doesn’t match line breaks - 4% don't match at line breaks -

Mumbered capture * Reset

(\web)\s*=\s (\uet)

§2--§1

B Create % Convert L Test h. Debug Use @ Library E GREP m Forum
Detaled ~ | (g Explin Token [EJ Insert Token - [Egl, Export =

w - Match the regex below and capture its match into backreference number 1)

v (] Match a single character that is a "word character” (Unicode; any letter or ideograph, any mark, dig
Between one and unlimited times, as many times as possible, giving back as needed (greedy)

w - Match a single character that is a "whitespace character” (any Unicode separator, tab, line feed, carriat

----- Between zero and unlimited times, as many times as possible, giving back as needed (greedy)
-.[&] Match the character "=" literallv v

Compare (no comparison) -

-{1] Insert the text that was last matched by capturing group number 2
{88 Insert the character string " = " literally
-{4] Insert the text that was last matched by capturing group number 1

17

Split

A split action creates an array or list of strings from a given subject string. The first string in the resulting
array is the part of the subject before the first regex match. The second string is the part between the first and
second matches, the third string the part between the second and third matches, etc. The final string is the
remainder of the subject after the last regex match. The text actually matched by the regex is discarded.

In RegexBuddy, simply click on the Split button at the top and enter the regular expression into the text box.
You can right-click the text box to insert regex tokens without having to remember their exact syntax.

Many applications allow you to specify a limit for the number of times the string should be split. Some allow
you to choose whether text matched by capturing groups should be added to the array and whether empty
strings may be added to the array. Those options will appear after the regular expression options when
RegexBuddy is in Split mode.

Some applications do not have the ability to split strings. The Split button is grayed out when you select such
an application.

Perl 5.30-5.32 - Helpful -

0, Match & Rephce Copy~ [Paste~ |3 - () -

Case sensitive - Exact spacing - Dot doesn’t match line breaks - <% don't match 2t line breaks -
MNurnbered capture - Split with lirit: - 4 = Reset

’,
B create 2 convert L Test ¥l pebug use () Lbrary 3¢ GREP 8 Forum

U-E-O-@- ’,lDebug*‘&,&L|35pj'rt|unebyline -

one, ,three,four,five,six."
152,54,5,6

flos@oTizooos flosscooooooos R
cne three Four,five,six .’

1 2 4,5,6

18

5. Set Regular Expression Options

A mistake many people new to regular expressions make is to take any regex at face value. A regular
expression is meaningless in isolation. It will be interpreted by a particular application or programming
library. Different tools interpret regular expressions differently. Sometimes the differences are subtle.
Sometimes various tools use completely different syntax.

On top of that, most regex engines support various matching modes or options, such as case sensitivity. A
regular expression written with the “case insensitive” option in mind will miss most of the intended matches
if you forget to turn on that option when you implement the regular expression.

Fortunately, RegexBuddy makes things easy for you. When using RegexBuddy’s library of regular expressions,
click the Use button rather than copying and pasting the regex, and RegexBuddy will move over the
application and mode selections along with the regex. When converting a regex from one application to
another, RegexBuddy takes any differences in supported matching modes into account, and adjusts the regex
or warns as needed.

When you implement your regular expression on the Use panel, RegexBuddy will automatically set the same
matching options in the source code snippets. If you copy and paste the regular expression manually into
your source code, the matching options will 7o¢ be copied over automatically, since they’re not part of the
regular expression itself. Make sure to set the options in your own source code.

iy

PHP preq 7.2.0-7.2.34 * Hebful ~ | €L Match &, Replace Copy~ [P paste” | - O -

Default flavor - (ase sensitive ~ Exact spacing ~ Dot doesn’t match line breaks = ~% dont match at line breaks -

Default line breaks = Numbered capture ~ Mames must be unique = Greedy quantifiers = Allow zero-length matches -
Regex syntax only + Split with limit: - 42 5 Don't add groups ~ Don't add empty strings ~ Reset

Flavor 3
Case insensitive

Free-spacing ll Debug @ Use lﬁ_;‘ Library E GREP m Faorum

Dot matches line breaks - (& Highlight| € &, |'z Split | Line by line = (regex sees no line breaks) -

~% match at line breaks

Line break handling »
Named capture only
Allow duplicate names
Lazy guantifiers
Skip zero-length matches
Support string syntax
Spit with Jimit:
Split limit value: 42
Add groups
Add empty strings

Ak

Reset All Options

19

You can set the regular expression options by selecting different values the drop-down lists on the toolbar
above the regular expression in RegexBuddy. The value shown in each drop-down list is the present state of
that option. You can also toggle the options by pressing Alt+O on the keyboard and then pressing the
underlined letter of the option you want to toggle as it appears in the popup menu. The popup menu uses
check marks to indicate which options are on.

By default, RegexBuddy only shows the options that the selected application actually allows you to change.
On the Operation tab in the Preferences you can choose to always show all the options that RegexBuddy
supports. The above screen shot illustrates this. The options that the active application doesn’t support have
only one item in the drop-down list, so you can see the state of the option, but not change it. In the Alt+O
popup menu, options that can’t be changed are grayed out. The options for splitting strings are never shown
in Match or Replace mode, even when you turned on the preference to show all options.

¢ Flavor

o Default flavor: Use the application’s default regex syntax and matching behavior. For most
applications this is the only choice.

o ECMAScript: For std::regex this selects the ECMAScript grammar, which is the default and
the most feature-rich. It is somewhat similar to JavaScript’s regex syntax. For .NET, this
turns on RegexOptions. ECMAScript, which changes the behavior of a few regex tokens to
more closely match that of JavaScript. Do not confuse selecting ECMAScript as an option
for std::regex or NET with selecting actual ECMAScript as your application. To work with
the actual ECMAScript regex flavor, select JavaScript as your application.

Basic: Select the basic grammar for std::regex.
Extended: Sclect the extended grammar for std::regex.
Grep: Select the grep grammar for std::regex.

EGtep: Sclect the egrep grammar for std::regex.

o Awk: Select the awk grammar for std::regex.
¢ Case sensitivity

o Case insensitive: Differences between uppercase and lowercase characters are ignored. cat
matches CAT, Cat, or cAt or any other capitalization in addition to cat.

o Case sensitive: Differences between uppercase and lowercase characters are significant. cat
matches only cat.

e Free-spacing mode

o Free-spacing: Unescaped literal spaces and line breaks in the regex that are not inside a
character class are ignored so you can use them to format your regex to make it more
readable. In most applications this mode also makes # the start of a comment that runs until
the end of the line. Unescaped literal whitespace inside character classes does still add that
whitespace to the character class.

o Free-spacing [...]: Free-spacing mode that also ignores whitespace inside character classes.
Only a few regex flavors support this.

o Exact spacing: Unescaped spaces, line breaks, and # characters in the regex are treated as
literal characters that the regex must match.

e Single-line mode

o Dot matches line breaks: The dot matches absolutely any character, whether it is a line
break character or not. Sometimes this option is called “single line mode”.

o Dot doesn’t match line breaks: The dot matches any character that is not a line break
character. Which characters are line break characters depends on the application and the line
break mode.

e Multi-line mode

o $ match at line breaks: The ” and $ anchors match after and before line breaks, or at the

start and the end of each line in the subject string. Which characters are line break characters

O O O O

20

depends on the application and the line break mode. Sometimes this option is called “multi-
line mode”.

o "$ don’t match at line breaks: The A and § anchors only match at the start and the end of
the whole subject string. Depending on the application, § may still match before a line break
at the very end of the string.

o $ match at line breaks; dot doesn’t match line breaks: Some applications allow these
two options only to be set in combination.

o "$ don’t match at line breaks; dot matches line breaks: Some applications allow these
two options only to be set in combination.

Line break handling

o Default line breaks: The dot and anchors use the application’s default interpretation for
line breaks.

o LF only: The dot and anchors recognize only the line feed character \n as a line break.

o CR only: The dot and anchors recognize only the carriage return character \r as a line
break.

o CRLF pairs only: The dot and anchors recognize only the line feed and carriage return
characters when they appear as a pair as a line break.

o CR, LF, or CRLF: The dot and anchors recognize the line feed and carriage return
characters as line breaks, whether they appear alone or as a pair.

o Unicode line breaks: The dot and anchors recognize all Unicode line breaks. This includes
the line feed and carriage return characters as line breaks, whether they appear alone or as a
pair, as well as the vertical tab \v, the form feed \f, next line \u@085, line separator
\u2028, and paragraph separator \u2029 characters.

Explicit capture

o Named capture only: A plain pair of parentheses is a non-capturing group. Named
capturing groups still capture. Sometimes this option is called “explicit capture”.

o Numbered capture: A plain pair of parentheses is a numbered capturing group.

Duplicate names

o Allow duplicate names: Multiple named capturing groups in the regular expression are
allowed to have the same name. How backreferences to shared names are treated depends
on the application.

o Names must be unique: All named capturing groups in the regular expression must have a
unique name. Groups with the same name are treated as an error.

Lazy quantifiers

o Lazy quantifiers: Quantifiers are lazy by default. Adding a question mark makes them
greedy. So a¥ is lazy and a*? is greedy.

o Greedy quantifiers: Quantifiers are greedy by default. If the application supports lazy
quantifiers, then adding a question mark makes quantifiers lazy. So a¥ is greedy and a*?, if
supported, is lazy.

Zero-length matches

o Skip zero-length matches: Skip any zero-length matches found by the regular expression.
\d* will only match sequences of digits. Some applications skip matches by backtracking, so
\d* | a matches all sequences of digits and all letters a. Other applications skip matches by
advancing through the string, so \d* | a matches all sequences of digits but never matches a
because it is skipped over when the first alternative finds a zero-length match.

o Allow zero-length matches: Treat zero-length matches as normal matches. \d* will match
sequences of digits and will also find a zero-length at each position in the string that is not
followed by a digit.

String syntax

o Support string syntax: Make RegexBuddy recognize syntax that is supported by string

literals in a programming language as if it were part of the regular expression or replacement

21

syntax. Select this option if you plan to use your regex and/or replacement text as a literal
string in source code. For example, with Python 3.2 and eatrlier, RegexBuddy will recognize
\UFFFF in this mode, because Python recognizes such escapes in literal strings.

Regex syntax only: Tell RegexBuddy not to recognize any syntax other than what the
regular expression engine itself supports. Select this option if you plan to provide the regex
and/or replacement text as user input to the application. For example, with Python 3.2 and
earlier, RegexBuddy will treat \UFFFF as an error in this mode, because the regex engine in
Python 3.2 and earlier does not recognize this escape.

e Split limit

@)
@)

Split without limit: Split the string as many times as possible.

Split with limit:: Limit the number of times the string is split. Some applications take this
number as the maximum number of regex matches to split on, while other applications take
this number as the maximum number of strings in the returned array. Some applications add
the unsplit remainder of the string to the array, while others don’t. A zero or negative limit
makes some applications split the string as many times as possible, while others will not split
the string at all. A zero or negative limit also makes some applications discard empty strings
from the end of the returned array.

e Split capture

@)

@)

Add groups: When splitting a string, add text matched by capturing groups to the array.
Some applications add all groups, while others add only the first or the last group.
Don’t add groups: When splitting a string, do nothing with text matched by capturing

groups.

e Split empty

@)

Add empty strings: When splitting a string, regex matches that are adjacent to each other
or the start or end of the string and capturing groups that find zero-length matches (when
adding groups) cause empty strings to be added to the array. Some applications may not add
empty strings to the array in certain situations even when this option is set, sometimes
depending on whether and which limit you specitied

Don’t add empty strings: When splitting a string, never add any empty strings to the
returned array.

Default Options

The drop-down lists use positive labels to indicate all states. The case sensitivity or insensitivity option, for
example, is always indicated as “case sensitive” and “case insensitive”. This avoids confusing double
negations like “case insensitive off”. It also avoids confusion when switching between applications where one
is case sensitive by default with an option to make it case insensitive, and the other is case insensitive by
default and has an option to make it case sensitive.

22

PHP preg 7.2.0— = Helpful ~ |0 Match & Replce copy~ [paste~ (O - O -

Case insensitive Free-spacing Dot matches line breaks $ match at line breaks Lazy guantifiers
Support string syntax | Split with limit: |42 > Add groups Add empty strings Reset

Case insensitive

Free-spacing

Dot matches line breaks !. Debug Lse @ Library E GREF m Forum

~4¢ match at line breaks q - ‘ N | 7 split

ine breaks) -

Lazy guantifiers

Support string syntax
Split with limit:
Split limit value: 42
Add groups
Add emphy strings

4k

BReset All Options

But if the potential confusion of toggle buttons does not bother you, you choose to “show options that can
be changed with toggle buttons that indicate the “on® state” on the Operation tab in the Preferences. The
above screen shot shows this. The benefit is that the buttons need only one click to toggle an option while
drop-down lists require two. The actual application you will use the regex with likely also has toggle buttons
or checkboxes rather than drop-down lists. But if you switch between applications in RegexBuddy, you will
need to take into account that the meaning of the buttons may invert. If an application is case sensitive by
default, the button will say “case insensitive”. If you then switch to an application that is case insensitive by
default, the button will change its label to “case sensitive” and will toggle its state (depressed or not). By
changing their labels the buttons ensure that the application’s default options are being used when all buttons
are off (not depressed).

Regardless of whether options are shown with drop-down lists or toggle buttons, you can click the Reset
button or select Reset All Options in the popup menu to change all options to the defaults for the current
application.

23

6. Insert a Token into The Regular Expression

RegexBuddy makes it easy to build regular expressions without having to remember every detail of the
complex regular expression syntax.

To insert a token into your regular expression, right-click in the editor box for the regular expression at the
spot where you want to insert the token. This will move the cursor to that position, and show the context
menu. In the context menu, select Insert Token. Alternatively, move the cursor by left-clicking or using the
arrow keys. Then open the Insert Token menu by clicking the Insert Token button on the Create panel or
pressing Alt+1 on the keyboard.

Some tokens, including lookaround, are grouping tokens. You can insert a group on its own. RegexBuddy will
then put the text cursor inside the newly added group, so you can fill it right away. To place an existing part
of the regular expression inside the new group, first select that part, and then add the grouping token.

Quantifiers are a special case. If you select part of the regular expression before inserting a quantifier,
RegexBuddy will turn the selection into a non-capturing group and apply the quantifier to that. If not, the
quantifier is inserted as a normal token, and it will repeat whatever precedes it.

When analyzing a regular expression on the Create panel, you can easily designate the spot where you want to
insert the token. Click on a token in the regex tree, and the new token will be inserted right after it. Click on
the Insert Token button in the toolbar to access the Insert Token menu.

List of Regex Tokens

The Insert Token menu offers the following items. Note that depending on the regular expression flavor that
you’re working with, certain items may not be available, or may insert different tokens into the regular
expression. Some regex flavors don’t offer certain features, or use a different syntax. The Unicode grapheme
item, for example, is disabled for regex flavors that don’t support Unicode. It inserts \X for flavors like Perl
that have a specific token for matching Unicode graphemes. For flavors that support Unicode but not \X, it
inserts (2>\P{M}\p{M} *) which uses the Unicode property syntax to match a single Unicode grapheme.

Literal text

Non-printable character

Any character including line breaks
Any character excluding line breaks
8-bit character

Unicode category

Unicode script

Unicode block

Unicode character

Unicode grapheme

Shorthand character class
Character class

POSIX class

Anchors

(€] Quantifier

[D Alternation

Numbered Capturing group
Named Capturing Group
Backreference

Recursion

Subroutine Call

@ Conditional
Non-capturing Group
Atomic Group
Lookaround

@ Mode modifiers

Comment
ﬁ RegexMagic

24

25

7. Insert a Regex Token to Match Specific Characters

The Insert Token button on the Create panel makes it easy to insert the following regular expression tokens
to match specific characters. See the Insert Token help topic for more details on how to build up a regular
expression via this menu.

Literal Text

Enter one or more characters that will be matched literally. RegexBuddy will escape any metacharacters you
enter with a backslash. Metacharacters are characters that have a special meaning in regular expressions.

¥ RegexBudd — O >
Ruby 2.4-3.2 ~ Heipful ~ |[E Match| &, Replace 7 Splt Copy~ [[paste O - O -
Case sensitive = Exact spacing - Dot doesnt match line breaks - Reset

1I8+1=2

B create ¥ convert L Test ¥fJ Debug use () Library ¢ GReP B Forum

Detaled ~ ||| Explain Token [EJ Insert Token~ | Compare (no comparison) ~ | [gg Bxport [] &

----- [A] Match the character "1" literally

{9 Match the character "+ literally
...[9 Match the character string "1=2" literally

Please enter the text you want the regex to match literally:
= |
" 0K 3K cancel & Help

Non-Printable Character

Match a specific non-printable character, such as a tab, line feed, carriage return, alert (bell), backspace,
escape, form feed, or vertical tab. You can insert non-printable characters directly into the regular expression,
or inside a character class. If the selected application supports any kind of escape sequence that represents the
character you want to insert, then RegexBuddy inserts that escape sequence. Otherwise, RegexBuddy inserts
the non-printable character directly.

26

Ly

Perl 5.30-5.32 - Helpful -

% Replace % Spitt Copy~ [Gipaste- | O -0 -

Case sensitive = Exact spacing -~ Dot doesn’t match line breaks - 4% don't match at line breaks -

Murmbered capture * Reset

YMEARA P \ahcHYe WA cK

B Create % Convert C‘g Test h' Debug Usge @ Library E GREP m Farurm
Detaled ~ | [Explain Token [EJ Insert Token ~ [k, Export ==

-{%g) Match the tab character

{9 Match a line break (carriage return and line feed pair, sole line feed, sole carriage return, vertical tab,
Match the carriage return character

-{%f Match the line feed character

-{9) Match the bell character

Match the backspace character

-{\# Match the escape character

(B Match the form feed character

Match the vertical tab character

Compare (no comparison) -

Any Line Break

Some applications such as Perl and PCRE support AR which matches any single line break regardless of its
style, and regardless of the active line break mode. This includes the line feed and carriage return characters as
line breaks, whether they appear alone or as a pair, as well as the vertical tab \Vv, the form feed \f, next line
\u0085, line separator \u2028, and paragraph separator \u2029 characters. So this token matches two
characters in case of a CRLF line break, and a single character in case of any other line break.

A few applications such as EditPad 7 and PowerGREP 4 transparently handle differences between LF, CR,
and CRLF line breaks. When the regex contains one of these line breaks literally (an actual line break—not
the \r or \n tokens) it will match any of these line breaks. For these applications, the Insert Token | Non-
Printable Characters | Any Line Break command inserts a literal line break into the regex.

Any Character Including Line Breaks

If the application has a specific token like \p{Any} that always matches any single character, regardless of
whether the character is a line break, then this item inserts that. If not, the item inserts a dot if the dot
matches line breaks option can be turned on. It will be turned on when needed. If the option is not available
or the regex already relies on the option being off, then the item inserts a character class that contains the full
range of characters.

27

Perl5.30-5.32 ~ Helpful ~ |[EL, Match| &, Replace 7 Spit copy~ [Paste~ | - 6 -

Case sensitive = Exact spacing -~ Dot doesn't match line breaks - % don't match at line breaks -
Numbered capture * Reset
Ap{Any}

E Create % Convert Q\ Test n Debug |_|_1| Use @ Library E GREP m Farum

Detailed - ﬂ Explin Token B Insert Token = @. Export ==
Match a character from the Unicode category “any” (any code point, regardless of whether it is assigned)

Compare (no comparison} -

Any Character Excluding Line Breaks

If the application has a specific token like \N that always matches any single character that is not a line break,
then this item inserts that. If not, the item inserts a dot if the dot matches line breaks option can be turned
off. It will be turned off when needed. If the option is not available or the regex already relies on the option
being on, then the item inserts a negated character class that matches any character except line breaks.

PCRE2 10.35-10 ~ Helpful - ([Match| &, Replace # soli Copy~ [paste~ | @) - @ -

Case sensitive = Exact spacing - Dot doesn't match line breaks =~ ~% don't match at line breaks -

CR, LF, or CRLF - Numbered capture ~ Mames must be uniqgue -~ Greedy quantifiers -
Allow zero-length matches - Reset
|\u

E Create % Convert), Test “ Debug |—_|1"| Use @ Library E GREF m Forum
Detailed - |ﬂ Explain Token [EJ Insert Token = &k Export [&=

PCREZ 10.35-10.39: Match any single character that is NOT a line break character (line feed, carriage return)
..[E3 Perl 5.30~5.32: Match any single character that is NOT a line break character (line feed)

Compare Perl 5.30-5.32 -

8-bit Character

Matches a specific character from an 8-bit code page. Use this to insert characters that you cannot type on
your keyboard when working with an application or programming language that does not support Unicode.

In the screen that appears, first select the code page or encoding that you will be working with in the
application where you’ll implement your regular expression. The code pages labeled “Windows” are the
Windows “ANSI” code pages. The default code page will be the code page you’re using on the Test panel, if
that is an 8-bit code page. To propetly test your regular expression, you’ll need to select the same code page
on the Test panel as you used when inserting 8-bit characters into your regex.

28

RegexBuddy shows you a grid of all available characters in that code page. Above the grid, choose whether
you want to match only one particular character, or if you want to match one character from a number of
possible characters. If you select to match one character, click on the character in the grid and then click OK.

Otherwise, clicking on a character in the grid will toggle its selection state. Select the characters you want, and
click OK.

RegexBuddy inserts a single hexadecimal character escape in the form of \XFF into your regular expression to
match the character you selected. If you select multiple characters, RegexBuddy puts the hexadecimal escapes
for them in a character class. If your regex flavor does not support hexadecimal escapes, RegexBuddy inserts
the characters literally.

29

M RegexBuddy — O ot
PCRE 4.0-4.4 + Helpful - ;;,, Replace Z Spit copy~ [paster | - @ -
[\eA3\x52\ AT \KAE]

B Create % Convert a‘ Test “ Debug Use @ Library E GREP m Farurm

Detaled ~ | [gd Explain Token |[EJ Insert Token~ | Compare (no comparison) - | [&gl Export =

w {ﬂ Match a single character present in the list below
{E The character "C" which occupies position 0x43 (67 decimal) in the character set (case sensitive)
[The character "R" which occupies position 0x52 (82 decimal) in the character set (case sensitive)

W The character with position 0xA9 (169 decimal) in the character set

...[] The character with position OXAE (174 decimal) in the character set

8-bit code page:

|?|.I'l|"|r1dows 1252: Western European H |
(") Match a single character

(®) Match one character out of a list of characters
0123456789 ABCDEF
0

1

2 1" # s %& " ()*+, - .
301234567889 :,; <=2>7
4@AEEDEFGHIJKLMND
sPods Tuvwxyz o[\]~_
6 " abcdefghijkI! mno
7 pgqrstuvwxyzdq{]| } ~
8 € , f ,.t1% %S5 & 7
9 7" T e - —"™F > e ;Y
A i ¢ £=Y¥Y | § "[@°? « - -[@
B o+ 22 " g - 10 » Ui
CAAAAARAARACEEEET T T
DPNOOOGOOx@BUUUOUYPSB
E & d a8 3dadadeceééé é&i i i1
F&fAoodado e ualGidybp V¥

[o | el | @rep |

30

8. Insert a Regex Token to Match Unicode Characters

The Insert Token button on the Create panel makes it easy to insert the following regular expression tokens
to match Unicode characters. See the Insert Token help topic for more details on how to build up a regular
expression via this menu.

Unicode Category
™ RegexBudd — O 4
Groovy (IDK 19— = Helpful ~ ||C), Match |®. Replace 7 Split Copy~ [} Paste~ (O - O -~
[\p{Nd}\p{Pd}\p{Pc}]
B Create % Corvert %, Test ﬂ. Debug Use |;31JT Library EE GREP m Forum
Detaled - | [Explain Token [Insert Token~ | Compare (no comparison) ~ | [kl Export =

w - Match a single character present in the list belowr
@ A character from the Unicode category “decimal number” (a digit zero through nine in any script ex

----- [A character from the Unicode category “dash punctuation” (any kind of hyphen or dash)

----- [A character from the Unicode category "connector punctuation” (a punctuation character such as ar

(®)Match a character that is in one of the following Unicode categories:
(") Match a character that is not in one of the following Unicode categories:

[Letter (LY I mumber (00 [symbol {53
[Letter with case (L&) Dedmal digit (Md) [CImath symbal {Sm)
[JLowercase letter (LI [Letter number (M) []currency symbal (5c)
[Juppercase letter (Lu) [] other number {Ma) [IModifier symbal (k)
[mitlecase letter (L) [JPunctustion (&) [Jother symbal {5o)
[Medifier letter (Lm) Dash punctuation (Pd) [other ()
[]Other letter (Le) [[] open punctuation {Ps) [Jcentrel {Cc)
[Mark () [] close punctuation {Pe) [JFormat (cf)
[Mon-spacing mark (Mm) [tnitial punctuation {Pi) [JPrivate use (Co)
[] spacing combining mark (Mc) []Final punctuation (Pf) [Jsurrogate {Cs)
[Endlasing mark {Me) Connector punctuation (Pc) [Junassigned (cn)
[Separator 2) [J other punctuation (Fao)
[space separator (Zs)
[Line separator {Z1)

[JParagraph separator (zp) Kol || @ beb

The Unicode standard places each character into exactly one category. Insert a regular expression token to
match a Unicode category if you want to match any character from a particular Unicode category. This makes
it easy to match any letter, any digit, etc. regardless of language, script or text encoding.

31
In the window that appears, select one or more categories that the character you want to match should

belong to. If you select more than one category, RegexBuddy will combine the Unicode category regex tokens
into a character class to match any character belonging to any of the categories you selected.

Unicode Script

¥ RegexBuddy . O Y

v ||&, Match|®, Rephce 7 spit Copy~ [} paste~ |9 - @) -

PCRE 8.40-8.45 -~ Helpful

’ \p{Canadian_Aboriginal}

B3 creat ¥5 convert L Test ¥fJ Debug use () Library ¢ GREP B Forum
Detailed
----- Match a character from the Unicode script "Canadian Aboriginal”

Compare (no comparison)

Unicode script:

Common Georgian Khmer Tagalog

Arabic Greek Lao Tagbanwa

Armenian Gujarat Latin TailLe

Bengali Gurmukhi Limbu Tamil

Bopomofo Han Malayalam Telugu

Braille Hanqul Mongolian Thaana

Buhid Hanunoo Myanmar Thai
ebrew CQgham Tibetan

Cherokee Hiragana Qriya i

Cyrillic Inherited Runic

Devanagari Kannada Sinhala

Ethiopic Katakana Syriac

Characters in this seript:
VAAADPDBPDBEPBEPAAdAVYVAAA A
ADD>D>BEaagdggw = & 7/

u (] o (o] & I} . — + T v\ ﬂ. [:,\ q‘\ V ;\

AA>>>>><<VVAANAAD>

>SS <c<<L < yUnNnNnN
DOYDHXHCCUUNNANNDD D!
cCcCcCCceun>Cqpeerd
d bbq b-
b- b+ ¢ J

QPP PP ddddb
qQpdb L P rJ J
| Select Font | | w 0K | | x Cancel | | i€ Help ‘

L—d-cr..UL_J

W

The Unicode standard places each assigned code point (character) into one script. A script is a group of code
points used by a patticular human writing system. Insert a regular expression token to match a Unicode script
if you want to match any character from a particular Unicode script. This makes it easy to match any

32

character from a certain writing system. Note that a writing system is not the same as a language. Some
writing systems like Latin span multiple languages, while some languages like Japanese have multiple scripts.

In the window that appears, select the script that you're interested in. RegexBuddy will insert a regex token
that matches any single character from the script.

The window will show a preview of the characters in the script. If you move the mouse over the grid, you can
see the hexadecimal and decimal representations of each character’s code point occupies in the Unicode
standard. If you see a great number of squares instead of characters in the grid, click the Select Font button to
change the grid’s font. The squares indicate the font cannot display the character. The last row of the grid
may have squares that are crossed out with thin gray lines. This simply indicates the script doesn’t have any
more characters to fill up the last row.

Unicode Block

The Unicode standard divides the Unicode character map into different blocks or ranges of code points.
Characters with similar purposes are grouped together in Unicode blocks. The arrangement is not 100%
strict. Some characters are placed in what seems the wrong block, mostly for historic reasons (i.e.
compatibility with legacy character encodings). Though some blocks have the same names as scripts, they
don’t necessarily include the same characters. If you want to match characters based on their meaning to
human readers, use Unicode scripts. If you want to match characters based on their Unicode code points, use
Unicode blocks.

In the window that appears, select the block that you’re interested in. RegexBuddy will insert a regex token
that matches any single character from the block.

The window will show a preview of the characters in the block. If you move the mouse over the grid, you can
see the hexadecimal and decimal representations of each character’s code point occupies in the Unicode
standard. If you see a great number of squares instead of characters in the grid, click the Select Font button to
change the grid’s font. The squares indicate the font cannot display the character. The grid may have squares
that are crossed out with thin gray lines. That means that the Unicode standard does not assign any characters
to those code points. The regex token to match a Unicode block will match any code point in the block,
whether a character is assigned to it or not.

33

M RegexBuddy — O ot
Scal (DK 19-21 - Helpful - % Replace @ Split Copy~ [paste (O - O -
’\p{lrﬁreekﬂu[npti.c}

B create ¥ convert L Test ¥fJ Debug use () Library ¢ GReP B Forum

Detaled ~ | [Explain Token [EJ Insert Token~ | Compare (no comparison) ~ | [kl Export =

----- Match a character from the Unicode block "Greek and Coptic® (U+0370—-U+03FF)

Unicode Blodk:

Basic Latin Syriac
Latin-1 Supplement Thaana
Latin Extended-A Devanagari
Latin Extended-8 Bengali

IPA Extensions Gurmukhi
Spacing Modifier Letters Gujarati

Combining Diacritical Marks

Sreek and Coplic amil
Cyrillic Telugu
Cyrillic Supplementary Kannada
Armenian Malayalam
Hebrew Sinhala
Arabic Thai
£ >

Characters in this block:

0123456789 ABCDEF ~
370 " . :
380 T A EH o Yu
390 TABTAEZHOI KAMNZ=ZO
3A0 M P STYOXWQIT Yacénqi
3BO 0 apydednB 1 KApmyveEgo
3COMTMpcoTUXWWI Ud&duUvw
3D0B Y YY dwu Qo C g FFhyg
SEOMP3yWwdHY9YUYbeseecec¥¥rbs t t
| Select Font | [o ok ||x::ance4|| Qﬂelp‘

Unicode Grapheme

Insert NX or equivalent syntax to match any Unicode grapheme.

34

Perl 5.30-5.32 - Helpful ~ ||CL Match|® Rephce & Split Copy~ [Paste~ | - O -
Case sensitive = Exact spacing -~ Dot doesn't match line breaks - % don't match at line breaks -

Numbered capture * Reset

X

E Create % Convert Q@ Test h. Debug Use @ Library EE GREP m Forum
Detailed - ﬂ Explin Token B Insert Token = @.. Export ==

--[W) Match any single Unicode grapheme (a character that is not a mark followed by one or more combining marks)

Compare (no comparison} -

Unicode Character

Matches a specific Unicode character or Unicode code point. Use this to insert characters that you cannot
type on your keyboard when working with an application or programming language that supports Unicode.

In the screen that appears, RegexBuddy shows a grid with all available Unicode characters. Since the Unicode
character set is very large, this can be a bit unwieldy. If you know what Unicode category the character you
want belongs to, select it from the drop-down list at the top to see only characters of that category. If you
move the mouse over the grid, you can see the hexadecimal and decimal representations of each character’s
code point in the Unicode standard.

If you see a great number of squares instead of characters in the grid, click the Select Font button to change
the grid’s font. The squares indicate the font cannot display the character. With the “all code points”
character map option selected, certain squares will be crossed out with thin gray lines. These squares indicate
unassigned Unicode code points. These are reserved by the Unicode standard for future expansion. With any
other character map option selected, the last row of the grid may have squares that are crossed out with thin
gray lines. This simply indicates the selected category doesn’t have any more characters to fill up the last row.

Above the grid, choose whether you want to match only one particular character, or if you want to match one
character from a number of possible characters. If you select to match one character, click on the character in
the grid and then click OK. Otherwise, clicking on a character in the grid will toggle its selection state. Select
the characters you want, and click OK.

RegexBuddy inserts a single Unicode character escape in the form of N\UFFFF or N\Xx{FFFF} into your regular
expression to match the character you selected. If you select multiple characters, RegexBuddy puts the
Unicode escapes for them in a character class. If your regex flavor does not support Unicode escapes,
RegexBuddy inserts the characters literally.

35

M RegexBuddy — O ot
Python 3.11-3.1 + Hepful ~ |[EL, Match| &, Replace 7 spit copy~ [paster | - @ -
[\ueeE6\ue153\ue1E3\u8276]

B Create % Convert Q\ Test “ Debug Use @ Library E GREP m Forum

Detaled ~ | [gd Explain Token |[EJ Insert Token~ | Compare (no comparison) - |[&gl Export =

W {ﬂ Match a single character present in the list below

-] The character "=" which occupies Unicode code point U+00E6 (case sensitive)
{E The character "oe” which occupies Unicode code point U+0153 (case sensitive)
@ The character "&" which eccupies Unicode code point U+01E3 (case sensitive)

----- [The character "&" which occupies Unicode code point U+0276

(") Match a single character

(®)Match one character out of a list of characters:

Character map: |Inwert35‘.e letters V| | Select Font |
abcde fghij]klmnop »
qgqrstuvwxyz?*»y®*®0nkaa
a4daaffdceéeeeiitidi
6 666 6 e 00000 Y DbV aaasg
¢ e c et ddeéeéeeéagdaaagqgh
nRT T T i kk LT FEA
ninnooofarrtsss st
t t+d0a0gd0aduwy zzzZ I DD
bocdog fhREttAnToaqgpeaz11:Ht
twy 25 33 spdZljnmaiooi
00000 aaffdogdgkoo3d]dz
gnaeas6aaséeéei T oo6TFFD
i st3hdqg8zaeddody]
n teaoboeddsoosesa e 3 3
g] dgsesy ryyhf i+t o1+ ¢]
Ewwmnpnnoefdedéd 11 111
r TR Es [I 111 tits8 00 Am v

[o || el || @b |

36

9. Insert a Shorthand Character Class

The Insert Token button on the Create panel makes it easy to insert shorthand character classes without
having to remember the exact letter for the shorthand. See the Insert Token help topic for more details on
how to build up a regular expression via this menu.

A shorthand character class matches a single character from a specific set of characters. Most regex flavors
offer shorthands for digits, word characters, and whitespace. You can insert shorthand character classes
directly into the regular expression, or inside a character class.

RegexBuddy supports the following shorthands. The actual characters that each shorthand matches depend
on the application. No application supports all of these, as \h indeed appears twice in the list with two
different meanings.

e Digit: \d matches a single digit 0-9. It may also match digits in other scripts, depending on the regex
flavor.

e Word Character: \W matches a single “word character” which includes letters, digits, underscores. It
may also match other characters, depending on the regex flavor.

¢ Whitespace Character: \s matches a single “whitespace character”. This includes spaces and line
breaks, depending on the regex flavor.

o Uppercase Letter: \U matches a single uppercase letter A—Z. It may also match uppercase letters in
other scripts, depending on the regex flavor.

e Lowercase Letter: \1 matches a single lowercase letter a—z. It may also match lowercase letters in
other scripts, depending on the regex flavor.

e Hexadecimal Digit: \h matches a single hexadecimal digit (0-9, A-F, and a—f).

e Horizontal Space Character: \h matches a single “horizontal whitespace character”, which
includes the tab and any Unicode space separator.

e Vertical Space Character: \V matches a single “vertical whitespace character”, which includes the
line feed \n, carriage return \r, vertical tab \v, form feed \f, next line Nu@@85, line separator
\u2028, and paragraph separator \u2029 characters. \V is traditionally used to match the vertical
tab, which it still is in languages such as JavaScript, Python, and Ruby. But recent versions of Perl
and PCRE treat \v as a shorthand that includes the vertical tab along with all other vertical
whitespace.

e Initial Character in XML Name: \i matches any character that can appear as the first character in
an XML name.

e Consecutive Character in XML Name: \¢ matches any character that can appear as the second or
following character in an XML name.

If an application does not support a particular shorthand, then the menu item for this shorthand may
generate alternative syntax such as a POSIX class or a Unicode category. Or, the item may be disabled.

37

Per5.30-5.32 = Helpful - ch|®. Replace % Split [Copy~ [} Paste~

0-60-= 50

RCER R ERRY RN

E Create % Convert Q\ Test “ Debug Use @ Library E GREP m Forum
Detaled - | (g Exphin Token [EJ Insert Token - [k, Export =h

Compare *» Compare 3 applications <

Perl 5.30-5.32 & Python 3.11-3.12: Match a single character that is a "digit” (any decimal number in any Unicode script)

Ruby 2.4-3.2: Match a single character that is a “digit” (ASCII 0-9 only)

@ Match the character ™ " literally

Perl 5.30-5.32: Match a single character that is a "word character” (Unicode; any letter or ideograph, any mark, digit, letter number, connector punctuation)
Python 3.11-3.12: Match a single character that is a "word character” (Unicode; any letter or ideograph, any number, underscore)

Ruby 2.4-3.2: Match a single character that is a "word character” (ASCII letter, digit, or underscore only}

@ Match the character ™ " literally

Perl 5.30-5.32 & Python 3.11-3.12: Match a single character that is a “whitespace character” (any Unicode separator, tab, line feed, carriage return, vertical ti
Ruby 2.4-3.2: Match a single character that is a “whitespace character” (ASCII space, tab, line feed, carriage return, vertical tab, form feed)

-{&] Match the character * ” literally

Perl 5.30-5.32: Match a single character that is a "horizontal whitespace character” (tab or any Unicode space separator)

{2 Python 3.11-3.12 does not support the \h shorthand character class for matching horizontal whitespace

&0 Ruby 2.4-3.2: Match a single character that is a "hexadecimal digit” (ASCII 0-9, a—f, or A-F)

-[&]) Match the character ™ ” literally

Perl 5.30-5.32: Match a single character that is a "vertical whitespace character” (line feed, vertical tab, form feed, carriage return, next line, paragraph separ
{2 Python 3.11-3.12 & Ruby 2.4-3.2: Match the vertical tab character

38

10. Insert a Regex Token to Match One Character out of
Many Possible Characters

The Insert Token button on the Create panel makes it easy to insert a tokens to match one character out of
many possible characters. See the Insert Token help topic for more details on how to build up a regular
expression via this menu.

A character class matches a single character out of a set of characters. Inside the character class, you can use a
wide range of regular expression tokens. Many of these also work outside character classes. Some of them are
unique to character classes.

First, you can specify if you want to match a character from the list of characters that you specify, or if you
want to match a character that’s not in your list. If you’ve already used the Insert Character Class dialog
during the current RegexBuddy session, it will default to the last class you edited. Click the Clear button if you
want to start with a clean slate.

To match a character out of a bunch that you can type on your keyboard, simply type them into the Literal
characters box. RegexBuddy takes care of escaping those characters that have a special meaning inside
character classes. Incidentally, these are 7o the same characters as those that have a special meaning in regular
expressions outside character classes.

If you want to match a character out of a series that you cannot type on your keyboard, click the ellipsis (...)
buttons next to the 8-it characters or Unicode characters fields to pick the characters you want to insert.
You’ll get the same selection dialogs as when you try to insert a token for matching 8-bit or Unicode
characters directly into your regular expression. RegexBuddy will generate the same \XFF and \UFFFF syntax,
though the \x and \u will not be shown in the Insert Character Class dialog for brevity.

The ellipsis buttons next to the Unicode categories, Unicode scripts, Unicode blocks, and POSIX classes
fields also show the same dialogs as their corresponding items in the Insert Token menu. The same regex
tokens will be inserted into the character class, and shown in the Insert Character Class dialog.

The second column in the dialog box starts with six checkboxes. The three at the left allow you to include
three common shorthand character classes in your character class. Their negated counterparts don’t have
checkboxes. Using negated shorthands in character classes is not recommended. The three other checkboxes
allow you to easily insert three commonly used non-printable characters. If you want to use others, you can
enter them in the “other character class tokens” field further down.

The Insert Character Class dialog provides four sets of edit boxes where you can specify character ranges.
Enter the first character in the range at the left, and the last character at the right of the long dash. Though
you can use any sort of character as the start or end point of a range, you should use only letters and digits to
define ranges. It’s easy for anyone to understand which characters are included in a range of letters or digits.
If you want to include a range of 8-bit or Unicode characters, you can use the \XFF or N\UFFFF syntax to
specify the range’s endpoints.

In the “other character class tokens” field you can enter additional tokens that RegexBuddy should include
into the character class. Whatever you type in here should be valid regular expression syntax inside a character
class. For example, you could type \e to include the escape character. Essentially, this is a catch-all field if you
like to use certain rarely used regex constructs that RegexBuddy doesn’t provide special support for in its

39

Insert Character Class dialog. Typically, you’ll only use this if you double-clicked on a character class in the
regex tree of a regular expression created by somebody else.

The “intersected character class” and “subtracted character class” field allows you to specify a character class
that should be intersected with or subtracted from the one you’ve just specified. Click the ellipsis (...) button
to open a second Insert Character Class dialog to define the character class to be intersected or subtracted.

Intersection is written as [A&&[B]] and results in a character class that only matches characters that are in
both sets A and B. Subtraction is written as [A-[B]] and results in a character class that only matches
characters that are in set A but not in set B. Both options will be available if the current application supports
character class intersection or character class subtraction. [A-[2B]] is the same as [A&&[B]], and
[A&&[2B]1] is the same as [A-[B]1], so RegexBuddy can easily adapt your choice to the available syntax. In
these examples, A and B are placeholders for larger sets of characters. For example, if you specify the Unicode
script \p{Thai} for your base character class, and you specify the Unicode category N\p{Number} for your
subtracted character class, then the resulting class [\p{Thai}-[\p{Number}]] or
[N\p{Thai}&&[~\p{Number}]] will match any Thai character that is not a number.

40

¥ RegexBuddy — O >

Java 10-21 = Helpful ~ @,,Eeplace # 5plit Copy~ [Paste~ (O - @ -
[1\["\xA9\XAE\UBEIF\u2BAC\sA-Fa-FAp{Pc}\p{Sm}\p{IsBraille}\p{InThai}\p{Lower }\-2&[“\p{N}]]

B Create % Convert Qﬁ Test “ Debug Usze @ Library E GREP m Farum
Detaied - | [Exphin Token [EJ Insert Token - [l Export [&=

v {ﬁ Match a single character present in the list below

-[&] The literal character "]

{E The literal character "[”

-[&] The literal character "~"

{E The character with position 0xA9 (169 decimal) in the character set

-[W] The character with position O%AE (174 decimal) in the character set

-{W%] The character "8" which occupies Unicode code point U+0E3F

-[W The character "€” which occupies Unicode code point U+20AC

{E A "whitespace character” (ASCII space, tab, line feed, carriage return, vertical tab, form feed)

-[&8 A character in the range between "A” and "F” (case sensitive)

{ﬁ A character in the range between "a" and "f" (case sensitive)

-[%] A character from the Unicode category "connector punctuation” (a punctuation character such as an underscore tl
[A character from the Unicode category "math symbol” (any mathematical symbal)

[A character from the Unicode script "Braille”

[A character from the Unicade block "Thai” (U+0E00~U+0E7F)

[A character from the POSIX character class "lower” (ASCII lowercase a—z only)

-[&] The literal character "-"

-{0) Except any character from the Unicode category “number” (any kind of numeric character in any script)

(®)Match one of the following characters::

(") Match a character that is not one of the following characters:

Compare (no comparison) -

Literal characters:

I~ | [pigits Iab
[Iword characters Carriage return

8-bit characters (hexadecimal values 00-FF):))

= | Whitespace characters | Line feed

A9 AE =] hitespa n

)) Range of characters: 2nd range of characters:

Unicode characters (hexadecimal values 0000-FFFF): =

foE>F 20ac] - = |-
3rd range of characters: 4th range of characters:

Unicode categories:
[ptpcypism} [=] -] [1-
Other character dass tokens:

Unicode scripts:

|‘||:|{IsBraiI|e} ||_| | |
Unicode blocks: (®) Intersected character dass:

|'l|:|{InThai} ||_| (O subtracted character dass:

POSIX dasses: |[A\P{N}] |u

‘pilower} "_I

[v/ || el || @b |

41

11. Insert a Regex Token to Match One Character from
Predefined POSIX Classes

The Insert Token button on the Create panel makes it easy to insert the following regular expression tokens
to match one character out of many possible characters. See the Insert Token help topic for more details on
how to build up a regular expression via this menu.

The POSIX standard defines a number of POSIX character classes, such as “alpha” for letters and “digit” for
numbers. On a fully POSIX compliant system, these classes will include letters and digits from other
languages and scripts, rather than justa to z and 0 to 9.

When you select POSIX Class in the Insert Token menu, a dialog box showing all the POSIX classes appears.

At the top of the dialog box, you can select whether you want to match a character that fits one of the
POSIX classes you’'ll select, or one that does not fit any of the selected classes.

The classes are arranged in a sort of tree. If a checkbox is indented under another one, that means that the
indented one is a strict subset of the one above it. E.g. all characters in the “space” class are also part of the
“blank” class. When you tick a checkbox, RegexBuddy will automatically tick the wholly contained classes as
well. E.g. ticking “space” will also tick “blank”. When you untick a checkbox, RegexBuddy will automatically
untick all classes that contain any of the unticked class’s characters. E.g. unticking “xdigit” will also untick
“alpha”, because “xdigit” includes a-f which are also part of “alpha”.

An exception to the tree structure is the “ascii” class. When a regex flavor only supports ASCIL, it includes
every possible character. However, most flavors support characters beyond ASCIIL. With those flavors, most
POSIX classes will include non-ASCII characters. The “ascii” class, however, always matches one of the 128
ASCII characters. So RegexBuddy’s POSIX class dialog treats the “ascii” class separately.

Below the tree you can select whether you want the POSIX class to match only ASCII characters, or all
relevant characters from the active code page, or any relevant character supported by Unicode. Most
applications give you only one choice.

If your application matches only ASCII characters with POSIX classes, then the grid at the bottom shows the
128 ASCII characters. It highlights the characters included in the selected POSIX classes. Clicking or moving
the mouse over the grid has no effect.

If your application matches non-ASCII characters with (some) POSIX classes, then the grid at the bottom
shows the characters matched by the POSIX class or classes you have ticked. If you move the mouse over the
grid, you can see the hexadecimal and decimal representations of each character’s code point in the Unicode
standard. The grid will be empty if you didn’t tick any POSIX classes. The grid won’t highlight anything, and
clicking it still won’t do anything,.

™ RegexBuddy — O .t

[CL match| %, Repiace 72 spit copy~ [paste~ | - O -

Case sensitive = Exact spadng + Dot doesn’t match line breaks = Reset

Ruby 2.4-3.2 = Helpful -

[[:alnum:]]

B3 create ¥ convert) Test ¥ Debug Use 1) Lbrary (@8 creP G Forum
Detaled ~ | [Ed Explain Token [EJ Insert Token ~ [Bxport [] &

Compare (no comparison) -

----- [Match a character from the POSIX character class "alnum” (Unicode; any letter or ideograph, digit, lett

(®) Match a character from one of the following POSIX dasses:
(") Match that iz not in one of the following POSIX dasses:

[ascii: Any ASCII character
[Jentrl: A control character
[Jepace: Any space or line break character
[Jblank: & space or a tab
[Jprint: Any printable character (every non-control character)

[CJaraph: any printable character except whitespace
|:| punct: Any punctuation character
[Jword: Letters, digits, and the underscore
alnum: Letters and digits
wdigit: A hexadedmal digit
digit: A dedmal digit
alpha: A letter
upper: An uppercase letter
[+ lower: & lowercase letter

ASCII characters only

Characters from the active code page

(®) Unicode characters

01234567 89 ABCDTEF ~

GHIJKLMNOPQRSTUWV

WXY Zabcde fghijk./l

mnopqgr st uwvwxy zayp

c AAAAAAAERACEEEET I I

ipRN0O0O66O@UOU0O0 YPGB

daddddmeceéeeéeée i il

3Aio6b666p0UGaGY DYV A

ahAapaagccecececeDdD

dEeEEEeEeEEEGIGEG v
v ok || eancel | @eb |

43

12. Insert a Regex Token to Match at a Certain Position

The Insert Token button on the Create panel makes it easy to insert the following regular expression tokens
to match at a certain position. They’re called “anchors” because they essentially anchor the regular expression
at the position they match. See the Insert Token help topic for more details on how to build up a regular
expression via this menu.

RegexBuddy supports the following anchors. Most applications only support some of these, and there is quite
a bit of variation in the syntax.

e Beginning of the string: \A or \‘ matches at the very start of the string only. If these are
unsupported, A is inserted if “*$ match at line breaks” can be turned off.

e End of the string: \z or \' matches at the very end of the string only. If these are unsupported
then A is inserted if “*$ match at line breaks” can be turned off and the application does not allow it
to match before the final line break in that mode.

e End of the string or before the final line break: \Z matches at the very end of the string, or
before the line break, if any, at the very end of the string. If the application does not support \Z or
matches at the end of the string only, then A is inserted if “*$ match at line breaks” can be turned off
and the application allows it to match before the final line break in that mode.

You can use N\Awhatever\z to verify that a string consists of nothing but “whatever”.

e Beginning of a line: Inserts 2 and turns on “°$ match at line breaks” to make A match at the start
of a line.
e End of a line: Inserts $ and turns on “~$ match at line breaks” to make $ match at the end of a line.

You can use “whatever$ to match “whatever” only if it can be found all by itself on a line. Use
A *whatever. *$ to completely match any line that has “whatever” somewhere on it.

e Start of the match attempt: \G matches at the start of the current match attempt. In some
applications, \A and \ * are implemented incorrectly, causing them to match at the start of any match
attempt rather than just the beginning of the string. For such applications, “start of match attempt”
inserts \A or \ © and “beginning of the string” is grayed out.

¢ End of the previous match: \G matches at the end of the previous match, or at the very start of the
string during the first match attempt. There is only a difference between the end of the previous
match and the start of the match attempt if the previous match was a zero-length match. Then the
start of the match attempt is one character beyond the end of the preceding zero-length match.

Put \G at the start of your regular expression if you only want to attempt it at one position, without going
through the whole subject string.

e Word boundary: \b or \y matches between a word character and a non-word character, as well as
between a word character and the start and the end of the string.

e Non a word boundary: \B or \Y matches between two word characters, as well as between two
non-word characters. Essentially, it matches everywhere \b doesn’t.

e Beginning of a word: \m, \<, or [[:<:]] matches at any position followed by but not preceded by
a word character.

e End of a word: \M, \>, or [[[:>:]] matches at any position preceded by but not followed by a
word character.

44

Placing word boundaries before and after a word as in \bword\b or N<word\> is the regex equivalent of a
“whole words only” search.

PowerGREP 5 = Helpful -

|51 match| &, Replace % spir [Copy~ [paste~

Case insensitive = Free-spacing ~ Dot doesn't match line breaks - Reset

0-0-@ 2|0

Subject:-hA-AZ- |
Line:: - -“‘-_1'._[-.
Match:-- -G,

E Create % Convert QQ Test !.. Debug Use @ Library § GREP m Forum
Detaled - |ﬂ Explain Token [EJ Insert Token - [, Export ==

[Match the character string "Subject:" literally (case insensitive)

(&) Assert position at the beginning of the string

Assert position at the end of the string, or before the line break at the end of the string, if any (carriage return and li
|| Assert position at the very end of the string

g Match the character string "Line:" literally (case insensitive)

-4 Assert position at the beginning of a line (at beginning of the string or after a line break character) (carriage return g
Assert position at the end of a line (at the end of the string or before a line break character) (carriage return and line
Match the character string "Match:" literally (case insensitive)

Assert position at the start of the match attempt (the start of the string for the first attempt)

Match the character string "Word:" literally {case insensitive)

Assert position at @ word boundary (position preceded or followed—but not both—by a Unicode letter, digit, or under
Assert position NOT at a word boundary (position both preceded and followed—or both not preceded and not followe
Assert position at the beginning of a word (position followed by but not preceded by a Unicode letter, digit, or unders
Assert position at the end of a word (position preceded by but not followed by a Unicode letter, digit, or underscore)

Compare (no comparison) -

< >

45

13. Insert a Regex Token to Repeat Another Token

The Insert Token button on the Create panel makes it easy to insert regular expression tokens to repeat other
tokens in your regular expression. Repeating tokens is done with “quantifiers”. See the Insert Token help
topic for more details on how to build up a regular expression via this menu.

A quantifier repeats the preceding regular expression token or group. If you specify a nonzero minimum
amount, the regular expression will fail to match if the token can’t be repeated that many times. If you specify
a maximum amount rather than ticking the “unlimited” checkbox, the token will be repeated at most that
many times. Note that it doesn’t matter if it could have been repeated more times. The remainder of the
subject text is simply ignored, or left for the remainder of the regular expression to match.

If the minimum and maximum are equal, then the regex engine will simply try to repeat the token that many
times. If the maximum amount is greater than the minimum, or unlimited, then the repetition style that you
choose comes into play.

The “greedy” mode is supported by all regular expression flavors. This mode first tries to match the
maximum allowed, and then reduces the repetition one step at a time up to the minimum as long as the
remainder of the regular expression fails to match.

The “lazy” mode is supported by many applications. It’s essentially the opposite of greedy. It matches the
minimum required, and then expands the repetition step by step as long as the remainder of the regex fails to
match.

The “possessive” mode is a relatively new feature only supported by a few regular expression flavors. It will
try to match as many times as it can, up to the maximum, and then stop. If the remainder of the regex fails to
match, it will not reduce the repetition.

If you have the subject string aaaa and you want to repeat the regex token a between 1 and unlimited times,
the greedy quantifier a matches aaaa, the lazy quantifier a+? matches a and the possessive quantifier a++
also matches aaaa.

If we put a dot at the end of the regex indicating that after our 1 to unlimited a characters we one to match
one more character, regardless of what it is, then the greedy quantifier a#. still matches aaaa (three times a
followed by any one character). The lazy quantifier a?. matches aa (one a followed by any one character).
The possessive quantifierat+., however, fails to match. First at+ matches all four aaaa characters. Then
there’s nothing left for the dot to match. Unlike the greedy quantifier, the possessive one doesn’t give back.

It’s important to understand these mechanics of repeating a token and giving back. This is called
backtracking. See the regular expressions tutorial for a more in-depth explanation.

— O x
Java 4 - Helpful - %Bephce & split Copy~ [Paste~

Case sensitive = Exact spacing - Dot doesn't match line breaks - 4% don't match 3t line breaks -
Default ine breaks - Reset

™ RegexBuddy

0-6-

af2, 7 b3, FicHt

Create Convert Test Debug Ise Library [E5 GREP Forum
(] =) =]| (3 use [:]

Detailed Compare (no comparisan)

v @ Match the character "a"” Ilterally (case sensitive)
----- Between 2 and 7 times, as many times as possible, giving back as needed (greedy)
v @ Match the character "b" literally (case sensitive)
----- ...[@] Between 3 and unlimited times, as few times as possible, expanding as needed (lazy)
v @ Match the character "c” literally (case sensitive)
----- ..{@) Between one and unlimited times, as many times as possible, without giving back (possessive)

Minimurm amount:
=]
= =]

Maximum amount:
T e
(®) As many times as possible, giving back as needed (greedy)

() As few times as possible, expanding as needed (Jazy)
() As many times as possible, without giving back (possessive)

[v o || xﬂancelH @ tep ‘

46

47

14. Insert a Regex Token to Match Different Alternatives

The Insert Token button on the Create panel makes it easy to insert a regular expression token to branch
between other tokens in your regular expression. Branching is done with the “alternation” operator. See the
Insert Token help topic for more details on how to build up a regular expression via this menu.

Alternation causes the overall regular expression or the group (if the alternation is inserted inside a group) to
match if either the part to the left of the vertical bar, or the part to the right of the vertical bar can be
matched. You can insert multiple vertical bars to create more than two alternatives. Joe | Jack|Mary matches
Joe, Jack or Mary.

If you want to alternate only part of a regular expression, you’ll need to place a group around the alternation.
To match the names of the Dalton brothers, use ((?:Joe/|Jack|[William/|Avarell) Dalton.

JavaScript (Chror = Helpful - % Replace ¥ Split Copy - [I_anste' 6 < 6 b

Case sensitive = Dot doesn't match line breaks - =% don't match at line breaks - Reset

(?:70e]Jack|wWilliam|Avarell)-Dalton

B create ¥ convert L Test ¥fJ Debug use () Library ¢ GReP B Forum

Detaled - | [Explain Token [EJ Insert Token - [k, Export [&=

Compare (no comparison} -

v [[J Match the regular expression below
v{] Match this alternative (attempting the next alternative only if this one fails)
. i.[#d match the character string "Joe” literally (case sensitive)
v {1 or match this alternative (attempting the next alternative only if this one fails)
Match the character string "Jack” literally (case sensitive)
[Or match this alternative (attempting the next alternative only if this one fails)
Match the character string "William” literally (case sensitive)
v [Or match this alternative (the entire group fails if this one fails to match)
Match the character string "Avarell” literally (case sensitive)
{889 Match the character string ™ Dalton” literally (case sensitive)

48

15. Insert a Capturing Group

The Insert Token button on the Create panel makes it easy to group regular expression tokens together and
to capture their part of the match. Simply select the part of the regular expression you want to group, and
then select the kind of group you want in the Insert Token menu. After adding numbered or named capturing
groups, you can use Insert Token | Backreference to insert backreferences to those groups, which attempt to
match the same text as most recently captured by the group they reference.

Numbered Capturing Group

A numbered capturing group groups the selected tokens together and stores their part of the match in a
numbered backreference. Numbered capturing groups are automatically numbered from left to right, starting
with number one. If you insert a quantifier after the capturing group, only the text matched by the last
iteration will be captured. E.g. when (ab)+c matches ababc, the group captures ab. If you want to capture
the text matched by all iterations, include the quantifier in the group, e.g.: (fabJl+) c.

Most regex flavors support up to 99 capturing groups. Some support only 9.

JavaScript (MSIE + Helpful ~ || Match|® Replace 7 Spit Copy~ [} Paster | - @ -

Case sensitive = % don't match at line breaks - Reset

’ ")

B Create % Convert CL, Test h. Debug Use @ Library EE GREP m Forum
Detaled - | (g Explain Token [EJ Insert Token - [, Export [&=

Compare (no comparison) -

\-i' - Match the regex below and capture its match into backreference number 1
w - Match a single character that is a “digit” (ASCI 0-9 only)

e Between one and unlimited times, as many times as possible, giving back as needed (greedy)
..[A] Match the character ™ literally

Named Capturing group

A named capturing group works just like a numbered capturing group, except that it creates a named
backreference rather than a numbered one. RegexBuddy prompts you for the name of the group that you
want to insert.

Mixing named and numbered groups in a single regular expression is not recommended. Some regular
expression flavors number both named and numbered groups from left to right, while others don’t include
the named groups in the numbering. This leads to confusion about which numbered group is referenced by
which numbered backreference.

49

Most applications require all named groups to have unique names. Some allow duplicate names, though
sometimes only as an option. When groups with duplicate names are allowed, you should only use the same
name for groups that are in separate alternatives, so that at most one group with a given name will actually
capture something. Applications behave quite differently when two groups with the same name participate in

a match.

M RegexBuddy — O .t

[C1 match| %, Repiace 72 spit Copy~ [paste~ | - O -

Case sensitive = Exact spacing - Dot doesn't match line breaks - 4% don't match 3t line breaks -

XRegBxp 2 (Chro = Helpful -

Murmbered capture * Reset

"(?<MyFirstGroupshd+)”

B Create % Convert QQ Test ’. Debug Use @ Library E GREP m Forum
Detaled ~ | (g Explin Token [EJ Insert Token - [Egl, Export =

Compare (no comparison) -

----- [A] Match the character ™ literally

v - Match the regex below and capture its match into a backreference named "MyFirstGroup” (also backred
- v [match a single character that is a "digit” (ASCII 0—9 only)

----- Between one and unlimited times, as many times as possible, giving back as needed (greedy)

----- {a Match the character ™" literally

Flease enter the name for the named capturing group.

MyFirstGrou | =

| " OK || € cancel || i) Help |

50

16. Insert a Backreference into the Regular Expression

If you’ve added one or more numbered or named capturing groups to your regular expression then you can
insert backreferences to those groups via Insert Token |Backreference. In the window that appears, click
inside the capturing group to which you want to insert a backreference. RegexBuddy automatically inserts a
named backreference when you select a named group and a numbered backreference when you select a
numbered group. The backreference will match the same text as most recently matched by the capturing
group.

For example, the regular expression \b (\w+) \s+\1\b matches a word that it captures into numbered group
#1. It then attempts to match one or more spaces followed by backreference #1. The backreference attempts

to match the exact same word as the capturing group just matches. Essentially, this regex matches doubled
words.

XRegExp 2 (MSIE standard) * Hebpful ~ |[EL Match|®. Replace 7 Spit Copy~ [} Paste~

Case sensitive ~ Exact spacing ~ Dot doesn’t match line breaks - ~% don't match at line breaks -~ Numbered capture * Reset

[BN - B

\b(?<TheWord>\wt}\s+\k<TheWord>\b

E Create % Convert ©4, Test S' Debug Use L__]'_'J Library EE GREP % Forum
Detaled - | (g Exphin Token [EJ Insert Token - [Egl, Export =h

@ Assert position at a word boundary (position preceded or followed—but not both—by an ASCII letter, digit, or underscore)
. Match the regex below and capture its match into a backreference named "TheWord" (also backreference number 1)
v {E Match a single character that is a "word character” (ASCII letter, digit, or underscore only)
..[@) Between one and unlimited times, as many times as possible, giving back as needed (greedy)
V{E Match a single character that is a "whitespace character” (any Unicode separator, tab, line feed, carriage return, vertical tab, form feed)
: Between one and unlimited times, as many times as possible, giving back as needed (greedy)
-{2] Match the same text that was most recently matched by the named capturing group "TheWord” (case sensitive; ignore if the group did not participate in the m
[Assert position at a word boundary (position preceded or followed—but not both—by an ASCII letter, digit, or underscore)

< Place the cursor inside the capturing group to which you want to insert a backreference: >
\b(?<ThewWord>\w+)\s+\k<Thelord>\b

Compare (no comparison) =

Chosen backreference

(O Numbered backreference: =

(®) Named backreference: TheWord w

Xeme || @

51

17. Insert a Token to Recurse into The Regex or a Capturing
Group

The Insert Token button on the Create panel makes it easy to insert tokens that recurse into the whole
regular expression or into a capturing group. Only a few regex engines such as Perl, PCRE, and Ruby support
this.

Recursion into The Whole Regular Expression

With or you can make your regular expression recurse into itself. The Recursion item in the
Insert Token menu automatically selects the correct syntax for your application.

You’ll need to make sure that your regular expression does not recurse infinitely. The recursion token must
not be the first token in the regex. The regex must match at least one character before the next recursion, so
that it will actually advance through the string. The regex also needs at least one alternative that does not
recurse, or the recursion itself must be optional, to allow the recursion to stop at some point.

Recursion is mostly used to match balanced constructs. The regex \([I()] *+(?:(?R) [I()] EEDREEN)
matches a pair of parentheses with all parentheses between them correctly nested, regardless of how many
nested pairs there are or how deeply they are nested. This regex satisfies both requirements for valid
recursion. The recursion token is preceded by \ (which matches sure that at least one character (an opening
parenthesis) is matched before the next recursion is attempted. The recursion is also optional because it is
inside a group that is made optional with the quantifier *+.

Y}

Perl 5.20 - Helpful -

% Replace @& Split Copy~ [Paste~ | @ ~ O -

Case sensitive - Exact spacing - Dot doesn't match line breaks - % don't match at line breaks - Reset

VRO CRI[AO 1) *H)

B Create % Corvert %, Test ﬂ. Debug Use @ Library E GREP m Forum

[Explain Token [BJ Insert Token - [k, Export =
----- [Match the opening parenthesis character

v Match any single character NOT present in the list "()"

Lo Between zero and unlimited times, as many times as possible, without giving back (possessive)
v {00 Match the regular expression below

----- Between zero and unlimited times, as many times as possible, without giving back (possessive)

Detailed - Compare (no comparison) -

@ Match the entire regular expression (recursion)
w - Match any single character NOT present in the list "(}"

L Between zero and unlimited times, as many times as possible, without giving back (possessive)
...[W Match the closing parenthesis character

52
Subroutine Calls

If you’ve added one or more numbered or named capturing groups to your regular expression then you can
make that group recurse into itself. [(?1) or \g<1> recurses into a numbered group, while (?&name) or
\g<name> recurses into a named group. The regex NA(\ ([2 ()] *+-(?l) [fO1 *+I*+\))\z matches a
pair of properly nested parentheses in the same way the example in the previous section does, but adds
anchors to make the regex match the whole string (or not at all). The anchors need to be excluded from the
recursion, which we do by adding a capturing group and limiting the recursion to the capturing group.

You can use the same syntax to insert a subroutine call to a named or numbered capturing group.
(\d++)\+(?1)=/(?1) is equivalent to (\d++) \+ (2 :\d++)=(?:\d++) and matches something like 1+2=3.
This illustrates the key difference between a subroutine call and a backreference. A backreference matches the
exact same text that was most recently matched by the group. A subroutine call reuses the part of the regex
inside the group. Subroutine calls can significantly increase the readability and reduce the complexity of
regular expressions that need to match the same construct (but not the exact same text) in more than one
place. If we extend these two regex to match sums of floating point numbers in scientific notation, they
become ([0-9]1*+\.?2+[0-9]++{[eE] [-+]12+[0-9]++Jl2+)\+(21)=(?21) and ([0-9]*+\.?+[0-
91++M[eE1 [-+]12+[0-91++J2+)\+(2:[0-9]*+\.2+[0-9]1++{[eE] [-+]2+[0-9]1++}2+)=(?: [0-

9] *+\.2+[0-91++[{[eE] [-+]12+[0-91++}|2+).

To get the correct syntax for your application, select Subroutine Call in the Insert Token menu. In the
window that appears, click inside the capturing group to which you want to insert a subroutine call.
RegexBuddy automatically inserts a named subroutine call when you select a named group, and a numbered
subroutine call when you select a numbered group.

Different Behavior of Recursion in Different Applications

Recursion is a relatively new addition to the regular expression syntax. Even the first three popular regex
engines to support it—Perl, PCRE, and Ruby—can’t agree on the finer details of how recursion should
behave. They’ve copied each other’s syntax for the most part (leading to multiple syntax options for the same
thing), but not their behavior. The developers of these regex engines likely didn’t test enough corner cases
when copying each other’s features, or didn’t think that these corner cases were common enough to worry
about.

Fortunately for you, RegexBuddy does worty about these differences. The Insert Subroutine Call shows how
the selected application behaves. The Create panel explains the exact behavior when in Detailed mode. The
Test panel always correctly emulates each application’s behavior.

The differences don’t affect any of the examples on this page. They only use possessive quantifiers which
never backtrack anyway. The regex that is recursed as a whole doesn’t have any capturing groups, and the
regexes with subroutine calls don’t have any capturing groups inside those subroutine calls.

53

™ RegexBuddy

— O *
Perl 5.20 - Helpful = ||, Match | %, Replace ¥ Spiit Copy~ [Paste~ |@ -0 - EBE-= |9'
Case sensitive = BExact spading = Dot doesn't match line breaks = % dont match at line breaks - Reset

MACRO TR [FO 1+)\

E Create ¥ convert 4 Test Yl Debug [[7 Use [Library (@ GREP & Forum

Detailed

Compare (no comparison}

[l Assert position at the beginning of the string

v [match the regex below and capture its match into backreference number 1
@ Match the opening parenthesis character

\:f . Match any single character NOT present in the list "(}"

: ..[@] Between zero and unlimited times, as many times as possible, without giving back (possessive)
v . Match the reqular expression below

..[@] Between zero and unlimited times, as many times as possible, without giving back (possessive)

: [2] match the regex inside capturing group number 1 (recursion; restore capturing groups upon exit)
w {480 Match any single character NOT present in the list ()"

. Between zero and unlimited times, as many times as possible, without giving back (possessive)
@ Match the closing parenthesis character

. Assert position at the very end of the string

Place the cursor inside the capturing group to which you want to insert a subroutine call:

MO T [FO 18 +\))\z

Chosen subroutine call

(®) pumbered call: =

Mamed call:

Backtracking if the overall regex fails after the call

(®) Backirack into the call, trying all permutations of the group to allow the overall regex to match
Atomic: do not backtrack into the call after it has matched, even if the overall regex fails to match

Handling of capturing groups

Do not capture the text matched by the subroutine call; groups inside the call capture normally
Capture the text matched by the subroutine call; groups inside the call capture normally
Isolate capturing aroups: call does not affect capturing groups and cannot see previously captured text

(®) Restore capturing groups: call does not affect capturing groups, but can see previously captured text

[v ox H XcancelH @ Heb |

54

18. Insert a Conditional into the Regular Expression

If you’ve added one or more numbered or named capturing groups to your regular expression then you can
insert conditionals that reference those groups via Insert Token|Conditional. In the window that appears,
click inside the capturing group which you want the conditional to be based on. RegexBuddy automatically
inserts a named conditional when you select a named group and a numbered conditional when you select a
numbered group. The inserted conditional will have two blank alternatives. You’ll need to provide those to
complete the conditional. The conditional will match the part to the left of the alternation operator when the
capturing group has participated in the match. It will match the part to the right of the alternation operator
when the capturing group has not participated in the match.

For example, the regular expression (if)?(2(1)then|else) starts with an optional group that either
matches and captures if or that does not participate in the match. The second part of the regex is a
conditional that references this optional group. If the group matched if then the conditional tries to match
then. If it did not participate in the match then the conditional tries to match else. So the only two possible
matches of this regular expression are ifthen and else.

¥ RegexBudd - O >
boost::wregex 1.66-1.77 - Helpful - |Q,Match ® Replace ¥ Spit Copy~ [} Paste- |- @ -
Default flavor - (Case sensitive - BExact spacing ~ Dot matches line breaks ~ ~& match at line breaks -
Numbered capture = Allow zero-length matches - Reset

(2= [, < <]| no) = (2 (<Erues)yeallnay)

B Create % Convert %, Test ﬂ,l Debug Use l:q_'ﬂ Library E§ GREP % Forum

Detaled - | [Explain Token [EJ Insert Token - sl Export [&=

v ﬁ Match the regular expression below

5 m Match this alternative (attempting the next alternative only if this one fails)

~ [@J Match the regex below and capture its match into a backreference named "true” (also backreference number 1)

Match the character string "yes" literally (case sensitive)

~ [or match this alternative (the entire group fails if this one fails to match)
Match the character string "no” literally (case sensitive)

: [&] Match the character "=" literally

v @ Check whether named capturing group ™true” matched when it was last attempted
v . If the group matched last time, then match the reqular expression below
. Match the character string "yea" literally (case sensitive)

v . If the group failed last time, then match the regular expression below

.89 Match the character string "nay” literally (case sensitive)

Place the cursor inside the capturing group that you want to be checked by the conditional:

(2R o<l no) =2 (<truezlyea]nay)

Compare (no comparison)

Chosen conditional

() Mumbered conditional: =

(®) Named conditional: true e

Kews || ame

55

19. Insert a Grouping Regex Token

The Insert Token button on the Create panel makes it easy to group regular expression tokens together.
Simply select the part of the regular expression you want to group, and then select the kind of group you
want in the Insert Token menu.

Non-Capturing group

A non-capturing group groups the selected tokens together, so you can insert a quantifier behind it that will
apply to the entire group. Non-capturing groups are also handy when you want to alternate only part of a
regular expression. As its name indicates, a non-capturing group does not capture anything. It’s merely for
grouping. The benefit is that you can freely mix non-capturing groups with numbered capturing groups in a
regular expression, without upsetting the backreference numbers of the capturing groups.

Some regex flavors do not support non-capturing groups. In that case, you’ll need to use a capturing group
instead.

JavaScript (Chror = Helpful = ||€4, Match | %) Replace 7 Split Copy~ [Paste (O - @ -
Case sensitive = Dot doesn't match line breaks - % dont match at ine breaks ~ Reset
(?:70e]Jack|william|Avarell)-Dalton

B3 create # convert CL Test ¥f§ Debug Use () Library ¢ GREP 4§ Forum

Detaled ~ | [gd Explain Token [EJ Insert Token~ | Compare (no comparison) = ||kl Export ==

v [OJ Match the regular expression below
vm Match this alternative (attempting the next alternative only if this one fails)
. ..[8 Match the character string "Joe” literally (case sensitive)
v {1l or match this alternative (attempting the next alternative only if this one fails)
Match the character string "Jack” literally (case sensitive)
v {1 or match this alternative (attempting the next alternative only if this one fails)
Match the character string "William" literally (case sensitive)
[Or match this alternative (the entire group fails if this one fails to match)
Match the character string "Avarell” literally (case sensitive)
{889 Match the character string ™ Dalton” literally (case sensitive)

Atomic Group

An atomic group is a non-capturing group that is atomic or indivisible. Once an atomic group has matched,
the regex engine will not try different permutations of it at the same starting position in the subject string.
You can use it to optimize your regular expression and to prevent catastrophic backtracking.

56

PowerShell - Helpful - %Eeplace P splt Copy~ [Paste~ |9 -0 -

Default flavor - (Case sensitive =~ Exact spacing -~ Dot doesn't match line breaks -

4% dont match at line breaks ~ Mumbered capture * Reset

al@bc]b)c

ECFEEtE %Convert t:1§Test nDebug @Us& @ Library &5 % GREP mForum

Detailed

Compare (no comparison}

. Match the character "a" literally (case sensitive)
w {8| Match the regular expression below; do not try further permutations of this group if the overall regex fails (atomic gr
' v . Match this alternative (attempting the next alternative only if this one fails)
...[588 match the character string “bc” literally (case sensitive)
w . Or match this alternative (the entire group fails if this one fails to match)
----- ...[&] Match the character "b” literally (case sensitive)
. Match the character "c" literally (case sensitive)

57

20. Insert Lookaround

Like anchors, lookaround groups match at a certain position rather than certain text. Lookahead will try to
look forward at the current position in the string, while lookbehind will try to look backward. If the regex
tokens inside the group can be matched at that position, positive lookaround will succeed, and negative
lookaround will fail. If the regex tokens cannot be matched, positive lookaround fails and negative
lookaround succeeds.

Visual Basic (.NE” = Helpful ~ %geplace 7 Splic Copy~ [Paste~ (@ - O -

Default flavor - Case sensitive = Free-spacing = Dot doesn't match line breaks -

-4 don't match at line breaks = Mumbered capture * Reset

(?=positive-lookahead] - (?<=positive- lookbehind)""
(#!negative-lookahead) - (2<!negative - lockbehind])

E3 create ¥ convert ©L, Test ¥fJ Debug use) vbrary 3% crer iR Forum
Brief - | [Bxplin Token [EJ Insert Token - [Egl, Export =

v [Assert that the regex below can be matched starting at this position (positive lookahead)

Match the character string "positive” literally

Match the character string "lookahead” literally

v [Assert that the regex below can be matched backwards at this position (positive lookbehind)
Match the character string "positive” literally

Match the character string "lookbehind” literally

v [Assert that it is impossible to match the regex below starting at this position (negative lookahead)
Match the character string "negative” literally

Match the character string "lookahead” literally

v [Assert that it is impossible to match the regex below backwards at this position (negative lookbehind)
Match the character string "negative” literally

Match the character string "ookbehind® literally

Compare (no comparison) -

Lookaround is mainly used to check if something occurs before or after the match that you’re interested in,
without including that something in the regex match.

e DPositive lookahead: Succeeds if the regular expression inside the lookahead can be matched starting
at the current position.

e Negative lookahead: Succeeds if the regular expression inside the lookahead can NOT be matched
starting at the current position.

e Dositive lookbehind: Succeeds if the regular expression can be matched ending at the current
position (i.e. to the left of it).

e Negative lookbehind: Succeeds if the regular expression can NOT be matched ending at the current
position (i.e. to the left of it).

Since regular expressions normally cannot be applied backwards, most applications only allow you to use
fixed-length regular expressions inside lookbehind. Some regex flavors don’t allow any quantifiers, while
others allow quantifiers as long as they’re not “unlimited”. The JGsoft and .NET regex flavors are the only
ones that allow full regular expressions inside lookbehind.

58

21. Insert a Regex Token to Change a Matching Mode

The Insert Token button on the Create panel makes it easy to insert the following regular expression tokens
to change how the regular expression engine applies your regular expression. These tokens are called mode
modifiers.

Visual Basic (L.NE™ - Helpful - %, Replace ¥ Split Copy ~ [_Ianste' 6 < 6 o

Default flavar ~ Case sensitive = Free-spacing ~ Dot doesnt match line breaks -
~% dont match at line breaks ~ Numbered capture - Reset
(#i:case_insensitivel--------- (?-i:case_sensitive]) .

(#s:. -matches_line_breaks) ---(#-5:. doesn 't_match_line_breaks}'._'._
(?m:"§-match_at line breaks])--(2-m:%§-don't match_at line breaks]..
(fdEfree-spacingfj- - rerreeen (#-xiexact-spacing])

B Create % Convert Q Test h' Debug |j|1"| Usge @ Library E GREP m Forum

Brief - | [Explain Token [EJ Insert Token - | Compare (no comparison) - | [kl Export [&

v [Match the regex below with these options

{i Case insensitive

Match the character string "case_insensitive” literally

v [Match the regex below with these options

-[¥ case sensitive

{89 Match the character string "case_sensitive” literally

~] Match the regex below with these options

-[¥] Dot matches line breaks

-8 Match any single character

Match the character string "matches_line_breaks" literally

v [Match the regex below with these options

-[¥ Dot doesn't match line breaks

-.[B] Match any single character that is NOT a line break character
Match the character string "doesn't_match_line_breaks" literally
v [Match the regex below with these options

[~% match at line breaks

-] Assert position at the beginning of a line

[Assert position at the end of a line

Match the character string "match_at_line_breaks" literally

v [Match the regex below with these options

[~$ don't match at line breaks

[Assert position at the beginning of the string

Assert position at the end of the string, or before the line break at the end of the string, if any
Match the character string "don't_match_at_line_breaks" literally
v [Match the regex below with these options

-{d Free-spacing

{89 Match the character string “free-spacing” literally

v [Match the regex below with these options

Ji Exact spacing

{89 Match the character string "exact spacing” literally

59

Mode modifiers are useful in situations where you can’t set overall matching modes like you can with the
combo boxes on RegexBuddy’s toolbar. Mode modifiers are not supported by all applications that support
matching modes. But in applications that do, mode modifiers always override modes set outside of the regex
(combo boxes in RegexBuddy).

e Turn on case insensitive: Differences between uppercase and lowercase characters are ignored.
cat matches CAT, Cat, or cAt or any other capitalization in addition to cat.

e Turn on free-spacing: Unescaped spaces and line breaks in the regex are ignored so you can use
them to format your regex to make it more readable. In most applications this mode also makes #
the start of a comment that runs until the end of the line.

e Turn on dot matches line breaks: The dot matches absolutely any character, whether it is a line
break character or not. Sometimes this option is called “single line mode”.

e Turn on *$ match at line breaks: The ” and $ anchors match after and before line breaks, or at
the start and the end of each line in the subject string. Which characters are line break characters
depends on the application and the line break mode. Sometimes this option is called “multi-line
mode”.

Some regular expression flavors also have mode modifiers to turn off modes, even though all modes are off
by default. These flavors allow you to place mode modifiers in the middle of a regex. The modifier will then
apply to the remainder of the regex to the right of the modifier, turning its mode on or off. With these
flavors, if you select part of your regex before choosing a mode modifier item in the Insert Token menu,
RegexBuddy will create a mode modifier span that sets the mode for the selected part of the regex only.

e Turn off case insensitive: Differences between uppercase and lowercase characters are significant.
cat matches only cat. Same as selecting “case sensitive” in the combo boxes.

e Turn off free-spacing: Unescaped spaces, line breaks, and # characters in the regex are treated as
literal characters that the regex must match. Same as selecting “exact spacing” in the combo boxes.

e Turn off dot matches line breaks: The dot matches any character that is not a line break character.
Which characters are line break characters depends on the application and the line break mode. Same
as selecting “dot doesn’t match line breaks” in the combo boxes.

e Turn off *$ match at line breaks: The / and $ anchors only match at the start and the end of the
whole subject string. Depending on the application, § may still match before a line break at the very
end of the string. Same as selecting “*$ don’t match at line breaks” in the combo boxes.

60

22. Insert a Comment

Click on the Insert Token button on the Create panel and select Comment to add a comment to your regular

expression. You can use comments to explain what your regular expression does. Comments are ignored by
the regex engine.

If you want to add a lot of comments to your regular expression, you should use turn on the free-spacing
option if your regex flavor supports it. In free-spacing mode, spaces and line breaks are ignored, so you can
lay out your regular expression and the comments freely.

Java B * Helpful -~ : Copy ™ [_]jEEStE' 6 N 6 - - = ‘9'

Case sensitive = Free-spacing [...] = Dot doesn’t match line breaks - % don’t match at line breaks -
Default line breaks + Reset

#-Matci S‘Mﬁr or-21st- century date- in- yyyy-mn-dd- format”, @HiStOW [ETy = |
1oj2oghdidy - - -0 # year: (group- 1)

[=Fa] e #:separator’,) +X|®|@@|E
(e[i-a]lrperagy------ocev e #:month: (group-2)". Date yyyy-mm-dd

S R #-separator,
(e[2-81[121[@=813[011Y - - -#-day- (group-3)

EJ create ¥ Convert), Test %] Debug [[3 Use [Library 3¢ GREP 6§ Forum
Detailed - |ﬂ Explain Token [EJ Insert Token~ | Compare (no comparison)

Comment: Match a 20th or 21st century date in yyyy-mm-dd format h

v . Match the regex below and capture its match into backreference number 1

v ﬁ Match the regular expression below

P [j Match this alternative (attempting the next alternative only if this one fails)

: ...[580 Match the character string “19” literally

w [] Or match this alternative (the entire group fails if this one fails to match)
.83 Match the character string "20” literally

%] Match a single character that is a "digit” (ASCII 0-9 only)

..[W Match a single character that is a "digit” (ASCI 0—2 only)

Comment: year (group 1)

. Match a single character from the list "-/."

Comment: separator

v . Match the regex below and capture its match into backreference number 2
v {] Match this alternative (attempting the next alternative only if this one fails)

. ..[A&] match the character "0” literally

-[53 match a single character in the range between "1” and "9"

v {] Or match this alternative (the entire group fails if this one fails to match)

@ Match the character "1" literally

880 Match a single character from the list "012"

Comment: month (group 2)

-[589 Match a single character from the list ™/."

Comment: separator

w . Match the regex below and capture its match into backreference number 3

v {] Match this alternative (attempting the next alternative only if this one fails)

. .[A] match the character "0" literally N

61

23. Using RegexMagic with RegexBuddy

RegexMagic is another product from Just Great Software. Just like RegexBuddy, it is designed to make it easy
to create regular expressions. The key difference is that with RegexBuddy, you work directly with the regular
expression syntax, or plain English building blocks that correspond directly with the regex syntax. With
RegexMagic, you don’t deal with the regular expression syntax at all. Instead you use RegexMagic’s powerful
patterns for matching characters, numbers, dates, times, email addresses, and much more to specify what you
want, and RegexMagic generates the regular expression for you.

Suppose you want to match a number between 256 and 512. In RegexMagic, you simply select the “integer”
pattern. In the pattern’s properties, you set the minimum and maximum values to 256 and 512. RegexMagic
automatically generates the regular expression 51[0-2][50[0-91|[34]1[0-91{2}]2[6-9]1[0-9]|25[6-
9]. This regex, though conceptually simple, would be quite a chore to create by hand, even for regular
expression experts.

If you own both RegexBuddy and RegexMagic, you can use the RegexMagic button on the Create panel in
RegexBuddy to generate (part of) your regular expression with RegexMagic. The generated regex is
automatically transferred to RegexBuddy so you can further edit and test it. The RegexMagic button offers
three choices.

Click the Generate New Regex item under the RegexMagic button on the Create panel to launch
RegexMagic. The Samples panel will have one sample with the text from the Test panel in RegexBuddy. The
Match and Action panels will be blank. When you click the Send button on the Regex panel in RegexMagic,
the regular expression in RegexBuddy, if any, will be replaced with the one you generated in RegexMagic.
Nothing will happen if you close RegexMagic without clicking the Send button.

Click the Regenerate Regex item to launch RegexMagic with the same settings on the Samples, Match, and
Action panels as you had them when you last clicked the Send button in RegexMagic after choosing Generate
New Regex or Regenerate Regex in RegexBuddy. RegexMagic will not take over any changes you may have
made to the previously generated regular expression in RegexBuddy. While you can edit any regular
expression with RegexBuddy, RegexMagic can only edit regular expressions that it generated by itself, and for
which you have saved the settings in a RegexMagic library. When you click the Send button in RegexMagic,
the regular expression in RegexBuddy, if any, will be replaced with the one you generated in RegexMagic.

Click the Insert Regex item to launch RegexMagic. The first time you use this command, the Match and
Action panels in RegexMagic will be blank. After that, the Match and Action panels will be as you left them
last time you clicked the Send button in RegexMagic after choosing the Insert Regex command. When you
click the Send button in RegexMagic, the regular expression generated by RegexMagic is inserted into the
regular expression you have in RegexBuddy.

At the bottom of the Insert Token menu you’ll also see a RegexMagic item. This item works exactly the same
as the Insert Regex item in the RegexMagic menu.

62
24. Insert a Replacement Text Token

RegexBuddy makes it easy to build replacement texts without having to remember every detail of the
complex replacement text syntax.

To insert a token into the replacement text when defining a Replace action, right-click in the editor box for
the replacement text at the spot where you want to insert the token. This will move the cursor to that
position, and show the context menu. In the context menu, select Insert Token.

When analyzing a replacement text on the Create panel, you can easily designate the spot where you want to
insert the token. Click on a token in the replacement text tree, and the new token will be inserted right after it.
Click on the Insert Token button on the toolbar or press Alt+1 on the keyboard to access the Insert Token
menu. The Insert Token button and Alt+]l alternate between showing regular expression tokens and
replacement text tokens depending on which of the editor boxes for the regular expression and replacement
text or which of the trees on the Create panel most recently had keyboard focus.

List of Replacement Text Tokens

The Insert Token menu offers the following items. Note that depending on the replacement text flavor that
you’re working with, certain items may not be available, or may insert different tokens into the replacement
text. Some replacement flavors don’t offer certain features, or use a different syntax. The Subject left of
match item, for example, is often disabled because many applications don’t support this feature. Perl and
Ruby do, but with different syntax. For Petl this item inserts $ * while for Ruby it inserts \ .

Literal text
Non-printable character
8-bit character
Unicode character
Matched Text
Backreference

Last Backreference

@ Conditional

Subject Left of Match
Subject Right of Match
Whole Subject

63

25. Insert Specific Characters into The Replacement Text

The Insert Token button on the Create panel makes it easy to insert the following replacement text tokens

that represent specific characters. See the Insert Token help topic for more details on how to build up a
replacement text via this menu.

Literal Text

Enter one or more characters that will be inserted literally into the replacement text. RegexBuddy will escape
backslashes, dollar signs, and possibly other characters if the selected application requires that.

B RegexBuddy — O X
Java 19-21 = Helpful + | ©l, Match z Split copy~ [yPaste~ | - O -
Case sensitive = Exact spacing ~ Dot doesn’t match line breaks ~ ~% don’t match at line breaks -
Default line breaks -~ Regex syntax only * Reset

1\+1=[@-9]*

AE1+AE1=)%2 p—

P -

Please enter the text you want to insert literally into the replacement text:
k- >
B3 create ¥ convert O, Test ¥f] Debug [Use

1+ 1=52

Detaled - | [Explin Token [BJ Insert Token - | St |
-[A] Match the character "1 literally 3¢ cancel @ Help

(W) Match the character "+ literally

{89 Match the character string "1="" literally
v @ Match a single character in the range between "0” and "9

Con

-{% Insert a dollar sign o)
{889 nsert the character string "1+" literally
-[W) Insert a dollar sign

Insert the character string "1="literally

Non-Printable Character

Match a specific non-printable character, such as a tab, line feed, carriage return, alert (bell), backspace,
escape, form feed, or vertical tab. If the selected application supports any kind of escape sequence that
represents the character you want to insert, then RegexBuddy inserts that escape sequence. Otherwise,
RegexBuddy inserts the non-printable character directly.

64

Python 2.7 - Helpful -

O, match [&, Replace| 2 spit Copy~ [paster 3 - O -

Case sensitive = Exact spacing -~ Dot doesn’t match line breaks - 4% don't match at line breaks -
Regex syntax only * Reset

Mon-printable-characters

Nrntahbl A

B Create % Corvert %, Test ’. Debug Use @ Library E GREP m Forum

Detaled ~ | [Explain Token [EJ Insert Token~ &, Export ==
----- Match the character string "Mon-printable characters” literally (case sensitive)

Compare (no comparison) -

[V Insert a tab

Insert a carriage return
{9 nsert a line feed

[Insert a bell character
[Insert a backspace

{a Insert an escape character
{4 Insert a form feed

[Insert a vertical tab

8-bit Character

Inserts a specific character from an 8-bit code page. Use this to insert characters that you cannot type on your
keyboard when working with an application or programming language that does not support Unicode.

In the screen that appears, first select the code page or encoding that you will be working with in the
application where youll implement your regular expression. The code pages labeled “Windows” are the
Windows “ANSI” code pages. The default code page will be the code page you’re using on the Test panel, if
that is an 8-bit code page. To propetly test your regular expression, you’ll need to select the same code page
on the Test panel as you used when inserting 8-bit characters into your replacement text.

RegexBuddy shows you a grid of all available characters in that code page. Click on the character you want to
insert, and click OK.

RegexBuddy inserts a single hexadecimal character escape in the form of NXFF into your replacement text to
match the character you selected. If your replacement text flavor does not support hexadecimal escapes,
RegexBuddy inserts the characters literally.

65

M RegexBuddy — O ot
Perl 5.8 - Helpful - Qﬂatch z Split Copy~ Paste~ @ E @ =
\xAg

\xAE

B3 create #2 convert CL Test ¥f§ Debug Use () Library ¢ GREP 4§ Forum

Detaled ~ | [Explain Token [EJ Insert Token - | Compare (no comparison) ~ | [ggl, Export [&

----- Match the character with position 0xA9 (169 decimal) in the character set

----- Insert the character with position 0xAE (174 decimal) in the character set

&-hit code page:
|?|.I'l.r’|r1dows 1252: Western European HA |
(®) Match a single character
Match one character out of a list of characters
012345067 89ABCDEF
0
1
2 1" # s %& " ()*+, - .
30123456789 :,; <=23>7
4 @ABCDEFGHTIIJITKLMNDO
5PQRSTUVWXY Z[\]~*_
6 " abcdefghijkI! mno
7 pgqrstuvwxyz{]| } ~
8 € , f ,.t1% %S5 E 7
9 7" T e - —"™F > e ;Y
A i ¢ £xY¥Y !l § ©2«--@
B o+ 22 "y q - 10 %%l
CAAARAAECEEEET T T
DPNOOOOOx@UUUUYPSB
E & d 8 adadeceéeéddi 7
F&fAooddo e ualGiddybp ¥
[o< | Kot | @

66
Unicode Character

Inserts a specific Unicode character or Unicode code point. Use this to insert characters that you cannot type
on your keyboard when working with an application or programming language that supports Unicode.

In the screen that appears, RegexBuddy shows a grid with all available Unicode characters. Since the Unicode
character set is very large, this can be a bit unwieldy. If you know what Unicode category the character you
want belongs to, select it from the drop-down list at the top to see only characters of that category. If you
move the mouse over the grid, you can see the hexadecimal and decimal representations of each character’s
code point in the Unicode standard.

If you see a great number of squares instead of characters in the grid, click the Select Font button to change
the grid’s font. The squares indicate the font cannot display the character. With the “all code points”
character map option selected, certain squares will be crossed out with thin gray lines. These squares indicate
unassigned Unicode code points. These are reserved by the Unicode standard for future expansion. With any
other character map option selected, the last row of the grid may have squares that are crossed out with thin
gray lines. This simply indicates the selected category doesn’t have any more characters to fill up the last row.

RegexBuddy inserts a single Unicode character escape in the form of NUFFFF or \X{FFFF} into your
replacement text to insert the character you selected. If your replacement text flavor does not support
Unicode escapes, RegexBuddy inserts the characters literally.

67

™ RegexBuddy — O .t

O, match [&, Replace| 2 spit Copy~ [Rpaste~ | - O -

Case sensitive = Exact spacing - Dot doesn't match line breaks - 4% don't match 3t line breaks -

Perl 5.30-5.32 - Helpful -

Mumbered capture * Reset

B Create % Convert a\ Test “ Debug Use @ Library E GREP m Farurm
Detailed - E Explain Token B Insert Token ~ @ Export =

Compare (no comparison) -

----- Match the character "ce” which occupies Unicode code point U+0153 (case sensitive)

----- Insert the character "&" which occupies Unicode code point U+01E3

(®) Match a single character:
Match one character out of a list of characters
Character map: |Inwermse letters V| | Select Font |
abcdefghilij]kIlmnop »
qgqrstuvwxyz?»>®*0B aa
4 8daaec¢cééée i i T T 08N
6 66 60 @ 0000V PV aaasg
¢ t et ddeéeeé dgagagh
AT T T i i ki LT F oA
nnhnnpoodeoerfr is s s st
t +0o0a0gd0dduwy 22z 21 D6b
bocdog fhREttAnToaqgpeaz11:Ht
twy z2zg 33 spdZlinaioi
G 000eaa®2agagkood]Jdz
gnae®eaoéaaeéi T oo6T T 0
i st3hd8zaegddodyl
nteaoboseddssse e 33z
e 1 dgey rYyhHhfh i+ 11 ¢+ ¢ |
BwwmpnwNneac® ¢ 1 1 L 1T
rfTrREs T T 11 1it4dguo0oam v
[o | Kol | @tep |

68
26. Insert a Backreference into the Replacement Text

The Insert Token button on the Create panel makes it easy to insert the following replacement text tokens
that reinsert (part of) the regular expression match. See the Insert Token help topic for more details on how
to build up a replacement text via this menu.

Matched Text

Inserts a token such as $& or $0 into the replacement text that will be substituted with the overall regex
match. When using a regex that matches a URL, for example, the replacement text $&
will turn the URL into an anchor tag.

Ly

JavaScript (MSIE - Helpful -

L, Match 1 Split Copy~ Hj Paste

Case sensitive = % don't match at line breaks - Regex syntax onby * Reset

0-0-

http://ASE

{a-href="5&">3&

B create ¥ convert L Test ¥fJ Debug use () Lbrary ¢ GREP R Forum

Detaled ~ | [Explain Token [EJ Insert Token ~ [k, Export ==

Match the character string "http://” literally (case sensitive)
v (& Match a single character that is NOT a "whitespace character” (any Unicode separator, tab, line feed, ¢

----- Between one and unlimited times, as many times as possible, giving back as needed (greedy)

Compare (no comparison) -

< >

Insert the character string "<a href=""literally

----- [2] mnsert the whole reqular expression match

[Insert the character string "">" literally

m Insert the whole regular expression match
.../ Insert the character string "</a=" literally

Backreference

If you’ve added one or more numbered or named capturing groups to your regular expression then you can
insert backreferences to those groups via Insert Token|Backreference. In the window that appears, click
inside the capturing group to which you want to insert a backreference. RegexBuddy automatically inserts a
named backreference when you select a named group, and a numbered backreference when you select a
numbered group, using the correct syntax for the selected application.

The backreference will be substituted with the text matched by the capturing group when the replacement is
made. If the capturing group matched multiple times, perhaps because it has a quantifier, then only the text
last matched by that group is inserted into the replacement text.

69

For example, the regular expression \b(\w+) \s+\1\b matches a doubled word and captures that word into
numbered group #1. A search-and-replace using this regex and $1 or \1 as the replacement text will replace

all doubled words with a single instance of the same word.

M RegexBuddy — O s
XRegExp 2 (Chrome) v Helpful ~ | @ match [&, Replace| 7 spit Copy~ [Qipaste” |- O -
Case sensitive ~ Exact spacing = Dot doesn’t match line breaks = ~% dont match at line breaks - Numbered capture -

Regex syntax only * Reset

\b(?<TheWord>\w+)\s+\k<Thekord>\b

${Theword}

B Create % Convert Q,, Test 5. Debug Use li]_'ﬂ Library E§ GREP m Farum
Detaled - | [Explain Token [EJ Insert Token -

[Assert position at a word boundary (position preceded or followed—but not both—by an ASCII letter, digit, or underscore) s
| Match the regex below and capture its match into a backreference named "TheWord" (also backreference number 1)

v [ﬁ Match a single character that is @ "word character” (ASCII letter, digit, or underscore only)

..{@] Between one and unlimited times, as many times as possible, giving back as needed (greedy)

v @ Match a single character that isa “whltespace character [any Umcode separator, tab I|r1r::l feed carrlage return, vertical tab, fo ,,
(o= .
<

Compare (no comparison)}

>

m Insert the text that was last matched by the named capturing group "TheWord™

Place the cursor inside the capturing group to which you want to insert a backreference:
A\b(?<TheWord>\w+)\s+\k<Thekord>\b

Chosen badareference
() Mumbered backreference: =
(®) Named backreference: TheWord e

Kot |[

Last Backreference

Some flavors support the $+ or \+ token to insert the text matched by highest-numbered capturing group
into the replacement text. Unfortunately, it doesn’t have the same meaning in all applications that support it.
In some applications, it represents the text matched by the highest-numbered capturing group that actually

participated in the match. In other applications, it represents the highest-numbered capturing group, whether
it participated in the match or not.

For example, in the regex a(\d) | x (\w) the highest-numbered capturing group is the second one. When this
regex matches a4, the first capturing group matches 4, while the second group doesn’t patticipate in the
match attempt at all. In some applications, such as EditPad or Ruby, $+ or \+ will hold the 4 matched by the
first capturing group, which is the highest-numbered group that actually participated in the match. In other

70

applications, such as NET, $+ will be substituted with nothing, since the highest-numbered group in the
regex didn’t capture anything. When the same regex matches xy, EditPad, Ruby, and NET all store y in $+.

Also note that NET numbers named capturing groups after all non-named groups. This means that in NET,
$+ will always be substituted with the text matched by the last named group in the regex, whether it is
followed by non-named groups or not, and whether it actually participated in the match or not. This is yet
another reason why we recommend not mixing named and numbered capturing groups in a single regex.

EditPad 8 - Helpful -~ |Qmatch place | # split Copy~ [} Paste~ | - @ -
Case insensitive = Exact spacing ~ Dot doesn’t match line breaks = Reset

| a(\d) be(\w)

5+

E Create % Convert 0§ Test !' Debug Use @ Library E GREP m Forum
Detaled - | [Explain Token [El Insert Token ~

v {] Match this alternative (attempting the next alternative only if this one fails)

- -[A] Match the character “a” literally (case insensitive)

v . Match the regex below and capture its match into backreference number 1

[..[W) Match a single character that is a "digit” (any decimal number in any Unicode script)

v {] Or match this alternative (the entire match attempt fails if this one fails to match)

: (&] Match the character "x" literally (case insensitive)

{&@) match the regex below and capture its match into backreference number 2

EditPad 8: Match a single character that is a "word character” (Unicode; any letter or ideograph, digit, letter number, connector punctuation)
ASP.MET 2.0—4.8: Match a single character that is a "word character” (Unicode; any letter or ideograph, digit, connector punctuation)

Compare ASP.MET 2.0-4.8

EditPad 8: Insert the text that was last matched by the highest-numbered capturing group that captured anything
ASP.NET 2.0—4.8: Insert the text that was last matched by the highest-numbered capturing group (even if that group did not capture anything)

71

27. Insert a Conditional into the Replacement Text

The Insert Token button on the Create panel makes it easy to insert the following replacement text tokens
that reinsert (part of) the regular expression match. See the Insert Token help topic for more details on how
to build up a replacement text via this menu.

Conditional

If you’ve added one or more numbered or nam